Materials
1 Books
Universal gradient descent. Alexander Gasnikov - (in Russian) - probably, the most comprehensive book on the modern numerical methods, which covers a lot of theoretical and practical aspects of mathematical programming.
@article{gasnikov2017universal,
title={Universal gradient descent},
author={Gasnikov, Alexander},
journal={arXiv preprint arXiv:1711.00394},
year={2017}
}
@article{bubeck2015convex,
title={Convex optimization: Algorithms and complexity},
author={Bubeck, Sébastien and others},
journal={Foundations and Trends® in Machine Learning},
volume={8},
number={3-4},
pages={231--357},
year={2015},
publisher={Now Publishers, Inc.}
}
@book{boyd2004convex,
title={Convex optimization},
author={Boyd, Stephen and Vandenberghe, Lieven},
year={2004},
publisher={Cambridge university press}
}
@book{nocedal2006numerical,
title={Numerical optimization},
author={Nocedal, Jorge and Wright, Stephen},
year={2006},
publisher={Springer Science & Business Media}
}
@book{nesterov2018lectures,
title={Lectures on convex optimization},
author={Nesterov, Yurii},
volume={137},
publisher={Springer}
}
@book{todd2016minimum,
title={Minimum-volume ellipsoids: Theory and algorithms},
author={Todd, Michael J},
year={2016},
publisher={SIAM}
}
@article{жадан2014методы,
title={Методы оптимизации. Часть 1. Введение в выпуклый анализ и теорию оптимизации: учебное пособие},
author={Жадан, ВГ},
journal={М.: МФТИ},
year={2014}
}
@article{жадан2015методы,
title={Методы оптимизации. Часть 2. Численные алгоритмы: учебное пособие},
author={Жадан, ВГ},
journal={М.: МФТИ},
year={2015}
}
2 Courses
- Convex Optimization and Approximation course by Moritz Hardt @ UC Berkley.
- Convex Optimization course by Ryan Tibshirani @ CMU.
- Convex Optimization course by Lieven Vandenberghe @ UCLA.
- Convex Optimization course by Suvrit Sra @ UC Berkley.
- Advanced Optimization and Randomized Methods course by Alex Smola and Suvrit Sra @ CMU.
- Optimizaion methods course by Alexandr Katrutsa @ MIPT.
- Convex Analysis and Optimization course by Dimitri Bertsekas @ MIT.
- Optimization for Machine Learning course by Martin Jaggi @ EPFL.
- Optimization for Machine Learning course by Suvrit Sra.
- Методы оптимизации lectures by Alexander Gasnikov @ MIPT.
- Методы оптимизации seminars by Daniil Merkulov @ MIPT.
3 Blogs and personal pages
- I’m a bandit blog by Sébastien Bubeck.
- Blog by Moritz Hardt.
- Blog by Sebastian Pokutta with great cheat sheets on optimization.
- Blog by Sebastian Ruder about NLP and optimization.
- Personal page of Peter Richtarik with announcements and news.
- Personal page of Suvrit Sra.
- Blog by Fabian Pedregosa.
- Blog with beatiful insights about modern non-convex optimization.
- Machine Learning Research Blog by Francis Bach.
4 Software and apps
- Sci hub telegram bot allows you to access almost all the scientific papers in one click.