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Preface

Optimization is concerned with choosing several variables to optimize (maximize
or minimize) an objective function, usually subject to several constraints. In the last
twenty-five years, there has been considerable interest in the case where the decision
variables are the entries of a matrix, frequently required to be symmetric and positive
semidefinite. If all remaining constraints and the objective function are linear, this leads to
semidefinite programming. Such problems arise not only in standard matrix optimization
problems, like minimizing the maximum singular value of a parametrized matrix (or the
maximum eigenvalue in the symmetric case), but also in optimal control, in obtaining
good approximate solutions to hard combinatorial problems, and in approximating
optimal solutions of nonconvex optimization problems involving polynomials.

Traditional algorithms often use second-order approximations of the objective and
constraint functions at each iteration to obtain an improved iterate. Such methods have
attractive local convergence properties, usually at a quadratic or superlinear rate. How-
ever, as problems have grown in size—and particularly when the decision variables form
a matrix—the construction, storage, and updating of a second-order approximation, as
well as the linear algebra cost at each iteration of solving the corresponding optimization
subproblem, become prohibitive. Hence there has been renewed interest in first-order
methods, which scale well to such large problems.

This book studies particular matrix optimization problems, and first-order methods
for solving them, in a very simple and geometrically appealing situation: finding a
minimum-volume ellipsoid containing a set of points in Euclidean space. The matrix
decision variables arise since an ellipsoid is defined by a symmetric positive definite
matrix, and its volume is related to the determinant of that matrix. While this is a rather
special problem, it provides a fundamental approach to data analysis of a large set of points
in a high-dimensional space. It also arises in various problems in computational geometry
and, rather surprisingly, in optimal design in statistics.

We will discuss formulations of this problem, duality results and optimality condi-
tions, geometric properties of their optimal solutions, and in particular efficient first-
order algorithms for their solution. We will see that the low iteration cost of these meth-
ods, and their analysis, rely on the beautiful properties of the “log determinant” function
of a symmetric matrix, the formulae for updating the inverse and the determinant of
such a matrix after a rank-one modification, and sensitivity analysis results on nonlinear
optimization problems.

A closely associated problem asks for an ellipsoidal cylinder containing a set of points
whose cross section in a certain coordinate subspace has minimum area. This problem
also arises in computational geometry, and in a more general optimal design setting in
statistics. We provide a theoretical and algorithmic analysis of this problem as well.

A final chapter addresses in a more abbreviated way a number of related problems:
dealing with outliers, approximating by parallelotopes instead of ellipsoids, and ellipsoidal

xiii
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xiv Preface

approximation of a polyhedron given by linear inequalities rather than as a convex hull
of points.

An intriguing aspect of this area is that algorithms were developed independently and
simultaneously in two different disciplines and on either side of the Iron Curtain. Thus
our basic algorithms were developed by Frank and Wolfe in the optimization community,
and by Wynn and Atwood (in the West) and Fedorov (in the East) in the statistics
community. Very similar methods were proposed in electrical engineering for system
parameter identification. There is also a close relation to the ellipsoid algorithm in convex
optimization. We try to add perspective to our discussion by including a “Notes and
references” section at the end of each chapter. There are also mathematical connections
to geometric functional analysis and to spectral sparsification in graph theory.

This book is aimed at graduate students in applied mathematics or operations research
who are interested in matrix optimization problems or in first-order methods. I hope it
will also be of interest to a variety of researchers in these and related fields. Whether the
reader is concerned with these particular problems or not, we feel the techniques used
and the connections made will prove instructive. For those who want to experiment
with solving instances of these problems, we provide some computational results as well
as MATLAB codes for the algorithms. They are listed in Appendix B and posted at
www.siam.org/books/mo23.

The mathematical background required is quite modest: familiarity with linear
algebra and real analysis suffices. We also include in Appendix A some basic material on
positive (semi)definiteness, low-rank updates, matrix analysis, convexity, and optimality
conditions and duality.

I would like to thank my collaborators on ellipsoid-related optimization over the
years: Selin Damla Ahipaşaoğlu, Bruce Burrell, Leonid Khachiyan, Martin Larsson, Peng
Sun, and Emre Alper Yıldırım. Special thanks go to Selin Damla Ahipaşaoğlu for her
careful reading of the manuscript and for providing some of the figures, including the
cover art.

This work was supported in part by NSF through grant DMS-0513337 and by ONR
through grants N00014-02-1-0057 and N00014-08-1-0036.
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Chapter 1

Introduction

This monograph is concerned with the problem of representing a (large) set of points
in a (high-dimensional) Euclidean space by an ellipsoid, in some sense optimally. This
might seem a very special problem, but we shall see that it provides a beautiful example
of the interplay of ideas from optimization, convex analysis, geometry, and linear
algebra. We will be concerned with the theory of this problem and its extensions, its
applications, and in particular the development of efficient algorithms for its solution.
The subject also provides a simple introduction to the study of matrix optimization
problems where a matrix variable must be symmetric and positive semidefinite, which
under the names of semidefinite programming (in the optimization community) and
linear matrix inequalities (in control theory circles) has been a fast-growing and vibrant
area over the last twenty years. On the other hand, it turns out that optimal ellipsoid
containment problems have a long, if intermittent, history in convex geometry and
optimization. Finally, the problems have numerous and wide-ranging applications in data
analysis, computational geometry, and (through their duals) optimal experimental design
in statistics.

In the next section, we discuss why we choose ellipsoids to make our approximations,
while the following section shows how the resulting optimization problems can be formu-
lated using the “logdet” function. Section 1.3 considers the closely related optimal design
problem in statistics. We then give some applications of the ellipsoid approximation
problem, after which Section 1.5 gives an outline of the rest of the book.

1.1 Why ellipsoids?
An ellipsoid is the affine image of a ball. We can picture it as the analog of an ellipse in
two dimensions, or a (rugby or American) football or flying saucer in three. Here we
shall argue that ellipsoids provide a good way to represent a more complicated convex set
in a Euclidean space.

Suppose we are given a bounded polyhedral set X⊆ IRn , described either as the convex
hull of m points,

X := conv{x1, x2, . . . , xm}, (1.1.1)

where each xi lies in IRn , or as the set of solutions to m linear inequalities,

X := {x ∈ IRn : Ax ≤ b}, (1.1.2)

where A∈ IRm×n and b ∈ IRm .

1
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2 Chapter 1. Introduction

Each of these descriptions is reasonably compact, although it depends on the po-
tentially huge parameter m as well as the merely large dimension n. In the first case,
it is easy to optimize any linear function cT x cheaply over X just by computing the
m inner products cT xi , but testing membership in X requires the solution of a linear
programming problem. In the second case, membership only requires a matrix-vector
product Ax and some comparisons, but optimizing a linear function over X again requires
linear programming. We would like to find a set that represents X well in some sense,
which allows easy tests for membership and linear optimization, and whose description
is of a size depending only on n. We may be willing to invest a reasonable amount of
computing time in order to obtain this representative set, but then we would like queries
on the resulting set to be cheap.

A simple choice is just to take a random sample of O( f (n)) points from the xi ’s in the
first case, where f is a modestly growing function. This may work well statistically, but
we have no guarantee that the sample will represent the whole set accurately. In the same
vein, we could take the solution set for O( f (n)) linear inequalities, chosen at random
from those representing X in the second set, with similar drawbacks. Instead, we will
choose the set from a suitable family that has the minimum volume among all those that
contain the set X.

One family we could consider is that of (axis-aligned) boxes, sets of the form {x ∈ IRn :
l ≤ x ≤ u}, where l and u (u ≥ l ) are vectors in IRn . The minimum-volume enclosing
box is relatively easy to compute (at the cost of 2n linear programming calculations in
the second case), has a trivial description, and allows simple linear optimization and
membership tests. In addition, boxes have the attractive property that they are robust
with respect to the minimality criterion: the minimum-volume box is also the unique
inclusion-minimal box. However, they do not fit certain data sets very well, and are very
dependent on the coordinate representation of the vectors. To make this latter point more
precise, we would like our representative sets to have the affine invariance property that,
for any nonsingular affine transformation A : x &→ M x + b for (nonsingular) M ∈ IRn×n

and b ∈ IRn , if Y represents X, then A(Y) represents A(X). Boxes unfortunately fail this
requirement, as can easily be seen by considering a rotation of 45 degrees in the plane.

One way to circumvent this difficulty is to consider the set of all parallelotopes, which
are affine images of boxes. Indeed, this family has some nice properties, and we will come
back to it in the final chapter. However, parallelotopes do not fit convex sets quite as well
as the bodies we will choose, and they certainly do not have smooth boundaries.

The choice we will make in this monograph is to consider the family of ellipsoids, that
is, sets of the form

E(H , x̄) := {x ∈ IRn : (x − x̄)T H (x − x̄)≤ n}, (1.1.3)

where x̄ ∈ IRn is the center of the ellipsoid, and H is a symmetric positive definite matrix
of order n, i.e., H T = H and vT H v > 0 for all nonzero v ∈ IRn . We say that H defines
the shape (which we take to include the size) of the ellipsoid. We choose the right-hand
side to be n to simplify some later analysis. Abusing notation slightly, we write E(H ) to
denote an ellipsoid centered at the origin with shape matrix H , so E(H ) is an abbreviation
of E(H , 0). As a simple example, if H is n times the identity matrix, this set is just the
unit Euclidean ball centered at x̄ . Indeed, ellipsoids are just affine transformations of balls.
To see this, let L be the Cholesky factor of H ; that is, L is a lower triangular matrix with
positive diagonal entries satisfying H = LLT . (A review of linear algebra and some matrix
analysis appears in Appendix A; in particular, we show in Section A.2 that every positive
definite matrix H has a Cholesky factorization and a positive definite square root H 1/2

D
ow

nl
oa

de
d 

07
/1

5/
16

 to
 1

32
.2

39
.1

.2
31

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1.1. Why ellipsoids? 3

with H 1/2H 1/2 =H .) Then x lies in E(H , x̄) iff ‖LT (x − x̄)‖ ≤*n, so that

E(H , x̄) = {x = x̄ +(
*

nL−T )z : z ∈ IRn ,‖z‖ ≤ 1}. (1.1.4)

It is helpful to have some notation for symmetric matrices. We letSk denote the space
of real symmetric k×k matrices; Sk

+ denotes the cone of positive semidefinite matrices in
Sk (H with vT H v ≥ 0 for all v), while Sk

++ denotes the cone of positive definite matrices
in Sk . If Y and Z lie in Sk , we write Y + Z or Z , Y if Y −Z is positive semidefinite,
and Y - Z or Z ≺ Y if Y −Z is positive definite. In particular, Y - 0 (Y + 0) denotes
that Y is positive (semi)definite.

Let us check that ellipsoids satisfy our desired criteria. First, under the nonsingular
affine transformation A : x &→ x̂ := M x + b for some M ∈ IRn×n and b ∈ IRn , E(H , x̄)
transforms to E(Ĥ , ˆ̄x), where

Ĥ :=M−T H M−1, ˆ̄x :=A(x̄) =M x̄ + b .

Moreover, the volume of any (measurable) set is multiplied by |det M | under this trans-
formation, which yields the affine invariance property. Ellipsoids can be compactly
described by the n components of the center and the n(n + 1)/2 entries in the lower
triangle of H (or, perhaps more usefully, by the n(n+1)/2 nonzero entries of its Cholesky
factor L). Membership can be trivially checked by computing (x − x̄)T H (x − x̄) or the
norm of LT (x − x̄). Finally, we exhibit a closed-form solution to

minx cT x
(x− x̄)T H (x − x̄) ≤ n, (1.1.5)

assuming c ∈ IRn is nonzero. For this, we use the Karush–Kuhn–Tucker optimality
conditions, which are necessary (since the Slater condition holds) and sufficient for
this convex problem. (A review of optimality conditions for nonlinear programming
problems is given in Section A.6.) An optimal solution x must satisfy c+2λH (x− x̄) = 0,
where λ ≥ 0 with equality unless the constraint holds with equality. Hence we see that
cT x is minimized over E(H , x̄) at

x̄ −
!

n
cT H−1c

H−1c

and that the optimal value is
cT x̄ −

*
n cT H−1c . (1.1.6)

These are easy to compute if we have the Cholesky factorization of H , since H−1c =
L−T (L−1c), and solving linear systems of the form Lv = w or LT y = z is simple when L
is triangular.

It is also worth mentioning that, whenever a random variable has a multivariate
Gaussian distribution, the level sets of its probability distribution function will be
ellipsoids, whose shape matrices are proportional to the inverse of the covariance matrix
of the random variable. Further, as can easily be seen from (1.1.6), the set of ellipsoids
containing the origin in their interiors is invariant under polarity: the polar X◦ of a set X
is defined as {z ∈ IRn : zT x ≤ 1 for all x ∈X}.

We let

E∗(X) denote the minimum-volume ellipsoid containing X. (1.1.7)

(We shall see later that this ellipsoid exists and is unique, at least in the case where X is the
convex hull of a finite set of points.)
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4 Chapter 1. Introduction

Figure 1.1. Minimum-volume ellipsoid.

We now present a remarkable result due to F. John [45] in 1948 that demonstrates
the suitability of ellipsoids for fitting convex bodies. (A convex body in IRn is a convex
compact set with nonempty interior.) To state the result, we need to define (with a slight
abuse of notation) the homothetic scaling αE of an ellipsoid E as the set scaled by α around
its center x̄:

αE := {x̄ +αz : x̄ + z ∈ E}.

Theorem 1.1. Let X be a convex body in IRn.

(a) The homothetic scaling 1
nE∗(X) is contained in X.

(b) Further, if X is symmetric (−X=X), then 1*
nE∗(X) is contained in X.

In the next chapter, we will give a proof of this result when X is the convex hull of a
finite set of points.

John also implicitly showed that there is a finite subset of X, of cardinality at most
n(n + 3)/2, such that the minimum-volume ellipsoid containing this subset of points is
also the minimum-volume ellipsoid containing X. This small subset, called a core set, in
some sense represents X much better than a random subset of its points of comparable
size.

An example showing a cloud of points in IR3 and the minimum-volume ellipsoid
containing them is shown in Figure 1.1.

1.2 The minimum-volume enclosing ellipsoid problem
Our next task is to formulate the problem of finding the minimum-volume ellipsoid
containing a set X that is given as in (1.1.1) as the convex hull of a finite set of points
x1, x2, . . . , xm in IRn . Sets of the form (1.1.2), given by linear inequalities, will not be
considered again until the final chapter.

We saw in (1.1.4) that the ellipsoid E(H , x̄) could be written as an affine transformation
of the unit ball, using the matrix

*
nL−T , where L is the Cholesky factor of H . Thus its
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1.2. The minimum-volume enclosing ellipsoid problem 5

volume is that of the unit ball times |det(
*

nL−T )|; since H = LLT , and so det H =
(det L)2, we have

vol(E(H , x̄)) =
nn/2Ωn*

det H
, (1.2.1)

where Ωn is the volume of a ball of radius 1 in IRn . Hence to minimize the volume of an
ellipsoid, we can equivalently minimize the negative of the logarithm of the determinant
of its shape matrix. Recalling that we want H to be positive definite, we define the logdet
function by the following.

Definition 1.2.

lndet(H ) :=
"

lndet H if H is positive definite,
−∞ otherwise.

Why do we introduce this seemingly superfluous logarithm? It turns out (see Section
A.5) that −lndet is a strictly convex function on the space of symmetric matrices. Indeed,
it suffices to show that the second directional derivative at any positive definite H in the
direction of any symmetric nonzero E is positive, but Section A.5 shows that this is

(H−1E H−1) • E =Trace(H−1E H−1E)
=Trace[(H−1/2E H−1/2H−1/2E H−1/2)]
= ‖H−1/2E H−1/2‖2

F > 0.

Here we have used the inner product U •V := Trace(U T V ) of two similarly dimensioned
matrices and the corresponding Frobenius norm ‖U‖F := (U • U )1/2, and the identity
Trace(UV ) = Trace(V U ) for any m × n U and n × m V (see Section A.1). The first
directional derivative is also easy to evaluate: it is−H−1 •E , and it is key to the efficiency
of our algorithms that both the inverse (and the Cholesky factorization) and the value of
the logdet function are simple to update if we make a rank-one update to H .

We therefore see that the problem of finding the minimum-volume ellipsoid contain-
ing x1, x2, . . . , xm (and thus X) can be formulated as

minH ,x̄ −lndet(H )
(P1) (xi − x̄)T H (xi − x̄)≤ n, i = 1,2, . . . , m. (1.2.2)

Note that here the variables are the symmetric n × n shape matrix H and the center n-
vector x̄ , rather than the vector x as in problem (1.1.5) with very similar constraints.
Indeed, here we are designing the ellipsoid, rather than optimizing over a fixed one. Also,
we do not need to add the explicit constraint that H be positive definite, since this is
implicit from the form of the objective function (and from our stipulation that the logdet
function take the value negative infinity when its argument is not positive definite).

If n = 1, (P1) is trivially solvable. We let x̂ and x̌ denote the largest and smallest xi ,
and then set x̄ := (x̂+ x̌)/2 and H := 4/(x̂− x̌)2. Hence we assume n > 1 in the following.

Finally, it is important to observe that, although the objective function of (P1) is
convex and its constraints are convex separately in H and in x̄ , they are not convex in
H and x̄ jointly because of the cross terms −2xT

i H x̄ and x̄T H x̄ . If we restrict ourselves
to centered ellipsoids, with x̄ fixed at the origin, we obtain the optimization problem

minH −lndet(H )
(P ) xT

i H xi ≤ n, i = 1,2, . . . , m. (1.2.3)
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6 Chapter 1. Introduction

This problem is now convex, since its objective function is convex and its constraints
are linear in the variable H . Moreover, even though it seems very special, we will see in
the next chapter that the general minimum-volume enclosing ellipsoid problem can be
reduced to the centered case by considering points in the next higher dimension, which
is a very modest price to pay for convexity. We call (P ) the minimum-volume enclosing
ellipsoid (MVEE) problem.

Note that any such centered ellipsoid, along with xi , also naturally contains −xi ,
so we may consider the set X to be the convex hull of the centrally symmetric set
{±x1, . . . ,±xm}. Of course, we do not need to double the number of constraints, but
it is often helpful to think of xi as representing the pair of points ±xi .

1.3 Optimal design in statistics
And now for something (apparently) completely different! Suppose we would like to
study the relationship between some independent variable t ∈ IRp and a dependent
variable v ∈ IR. We assume that v is related to t by a model involving some unknown
parameters θ. In fact, we will assume that the model is linear in the parameters θ, but we
allow nonlinearity in t . So our model is

v = x(t )T θ,

where x : IRp → IRn captures the nonlinear dependence on t : for example, if we wanted
to build a cubic model of a scalar t , then x(t ) := (1; t ; t 2; t 3) ∈ IR4 and θ ∈ IR4 would
correspond to the unknown coefficients. (We use (p; q ; . . . ; r ) to denote the column vector
obtained by concatenating the scalars or vectors p, q , . . . , r .) Of course, there is usually
some error in the model and/or the measurement of v, and so we will assume that V is a
random variable,

V = x(t )T θ+ ε,
and we will further suppose that ε is distributed as a normal random variable with mean
0 and variance σ2.

To estimate θ, we might observe V at m different values of t , t1, t2, . . . , tm , corre-
sponding to m different values of x, x1 := x(t1), x2 := x(t2), . . . , xm := x(tm), obtaining
the vector (abusing notation slightly) v ∈ IRm . In fact, we will henceforth mostly ignore
the original variables t and concentrate on the linear relationship between x and V . We
assume that the m different observations of V are independent.

Let us denote by X the n×m matrix whose columns are the xi ’s. Then one estimator
of θ with attractive statistical properties is the solution to the least-squares problem
minθ ‖X T θ − v‖, which is (assuming X has rank n, which is necessary and sufficient
for the least-squares problem to have a unique solution)

θ̂ := (X X T )−1X v.

Since v is a sample of the random variable X T θ + ε, where ε is an m-dimensional
N (0,σ2I )-distributed random variable, θ̂ is a sample from the random variable

Θ̂ := (X X T )−1X (X T θ+ ε) = θ+(X X T )−1X ε,

whose mean is exactly θ. Hence our estimator is unbiased. Further, its variance is E(Θ̂−
θ)(Θ̂−θ)T , which is

(X X T )−1X E(εεT )X T (X X T )−1 = σ2(X X T )−1.
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1.4. Applications 7

In an experiment, we might choose to make multiple (or no) observations at the point
xi . This choice amounts to designing the experiment. In a more general setting, we might
also be able to choose the points xi from a given design space X , some compact subset of
IRn (which itself corresponds to all x(t )’s for t lying in a design space T ⊂ IRp ), but here
we confine ourselves to a finite design space X = {x1, x2, . . . , xm} for simplicity. Note that
x1, x2, . . . , xm correspond to all possible choices for x(t ), and so it is helpful to think of m
as potentially very large. Our choice is then just the number of observations to make at
each point. If we make ni (independent) observations at xi for i = 1,2, . . . , m, we get an
experimental design of size N :=

∑
i ni . (Throughout, the range of a summation over i is

always 1 through m.) Let W denote the diagonal matrix Diag (n1/N , . . . , nm/N ). Then
the corresponding estimator is (XW X T )−1XW v̄, where v̄ contains the sample averages
of the ni observations when x = xi , i = 1,2, . . . , m, with variance

σ2

N
(XW X T )−1.

We would like to choose the ni ’s, or equivalently W , to make this variance small in some
sense. This is a hard nonlinear integer programming problem, so instead we allow the
weighting matrix to correspond to any distribution on X , not just a distribution using
rational probabilities with denominator N , as above.

If we assign weight (probability) ui to xi , and choose to minimize the determinant of
the variance (D-optimality), we arrive at the problem

maxu∈Rm lndet(X U X T )
(D) eT u = 1,

u ≥ 0,
(1.3.1)

where, here and below, U denotes Diag (u) and e denotes a vector of 1’s of dimension
m. So once again, optimization of the logdet function appears, here in the very different
context of optimal design. We will see that the problems of finding a minimum-volume
centered ellipsoid containing X and obtaining a D-optimal design are very closely related:
in fact, they are dual problems.

Of course, D-optimality is just one way we can choose a design to somehow make the
variance matrix small. Another natural possibility is to consider the resulting variance
of an estimator for an observation taken at any design point: at xi , it is proportional to
xT

i (X U X T )−1xi . Hence we arrive at another criterion, called G-optimality, where we
seek to minimize the largest such variance:

min
u∈Rm
{max

i
(xT

i (X U X T )−1xi ) : eT u = 1, u ≥ 0}.

Remarkably, it turns out that a vector u is D-optimal iff it is G-optimal, so that this
optimality criterion has some robustness. Also, as in our discussion of ellipsoids, D- and
G-optimality have some invariance properties. A vector u is optimal for X iff it is optimal
for MX , where M is any nonsingular n × n matrix representing a nonsingular linear
transformation of the design space. So we could, for instance, use any desired basis of the
polynomials of degree n, and the resulting design would be the same. Other optimality
criteria are discussed in the references on optimal design given in Section 2.5.

1.4 Applications
Here we briefly list some applications of minimum-volume containing ellipsoids from
various fields. One large area is optimal design in statistics, which we have briefly
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8 Chapter 1. Introduction

described in the previous section and which we will continue to discuss throughout the
book. There are other applications in statistics. Silverman and Titterington [71]mention
using minimum-volume ellipsoids as “peeling” devices in data analysis: in particular, the
first few points peeled off can be regarded as outliers in the distribution generating the
points. (While this is a useful technique, there is clearly a danger in this approach, since
the minimum-volume ellipsoid itself is mostly determined by these outliers and hence
may be corrupted by noise and error.) They also note that the minimum-volume ellipsoid
can be used to estimate the mean and correlation structure of a population, especially in
the case where data points in the interior might be obliterated. Finally, they mention the
use of minimum-volume ellipsoids in pattern recognition in order to separate clouds of
points, citing Rosen [66], although he used a different criterion. In a similar way, we could
evaluate a proposed clustering of a set of points by, for example, summing the volumes
of the minimum ellipsoids containing each cluster. The advantage of using ellipsoids
rather than balls is that their affine invariance can better model the anisotropy of a given
subpopulation. Glineur [35] also uses ellipsoids in pattern recognition and clustering,
but with a different criterion of maximal separation. Silverman and Titterington [71]
also mention that minimum-volume ellipsoids can be viewed as anisotropic versions of
minimal covering spheres, which arise in facility location problems in operations research;
see, e.g., Elzinga and Hearn [26].

Containing ellipsoids have been used in parameter identification and control theory
to describe uncertainty sets for parameters or state vectors: see Schweppe [68] and
Chernousko [20] and the references therein. Vicino and Zappa [82] use a minimum-
volume containing parallelotope in a similar context. Hero, Zhang, and Rogers [42, 43]
use either ellipsoids or parallelotopes for tomographic feature detection and classification
in medical contexts.

Minimum-volume ellipsoids also arise in computational geometry and computer
graphics [24]. For example, computational challenges arise relating to obstacle avoidance
in robotics, and in avoiding intersection between moving objects, as in game design.
Calculating bounding ellipsoids for all the objects of interest can give a simple sufficient
condition for avoidance: if all bounding ellipsoids are disjoint, then so are the objects
of interest, while if two bounding ellipsoids intersect, further analysis can consider the
corresponding objects themselves.

Mathematical analysts are interested in approximating the norm in a Banach space by
a Euclidean norm: finding the minimum-volume centered ellipsoid containing its unit
ball and using Theorem 1.1 give a solution. (Some readers may think that this stretches
the notion of “application.”)

Finally, although our interest is in the optimization of ellipsoids, we should men-
tion that minimum-volume ellipsoids arise within other optimization methods. In his
integer-programming method, Lenstra [58] uses an initial rounding procedure that can
be performed by computing a minimum-volume ellipsoid for a bounded polyhedron.
And every step of the famous ellipsoid method for convex programming requires the
minimum-volume ellipsoid containing the intersection of an ellipsoid and a half-space or
slab.

Because we want to discuss this application in the future, let us define the situation
more precisely. Suppose we want to find a point in the polyhedron Z := {z ∈ IRn :
aT

j z ≥ c j , j = 1, . . . , m}, and we know somehow that Z is contained in the ellipsoid
E := n−1/2E(H , z) = {z ∈ IRn : (z − z)T H (z − z) ≤ 1} (for this application it is simpler
and more traditional to use a right-hand side of 1 rather than n). We check whether the
center z lies in Z, and if not we find a constraint, say aT z ≥ γ , which is violated by z .
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1.6. Notes and references 9

Without loss of generality, we can assume that a is scaled so that aT H−1a = 1, and then
aT (z − z), for z ∈ E , lies between −1 and +1. Let α := γ − aT z . Then all points in Z
lie in the set {z ∈ E : aT (z − z) ≥ α}, the intersection of an ellipsoid and a half-space. If
some of the constraints defining Z are two-sided, we may be able to find some β so that
all points in Z lie in the set

Eαβ := {z ∈ E : α≤ aT (z − z)≤β}, (1.4.1)

the intersection of an ellipsoid and a slab, i.e., the set between two parallel hyperplanes.
Indeed, the previous case is a special case where β= 1. In order to continue our method
of finding a point in Z, we need to find an ellipsoid containing Eαβ, and to make good
progress, we choose the minimum-volume such ellipsoid.

1.5 Outline of the book
The preceding sections have given some idea of the simplicity and flexibility of ellipsoids
and the elegant properties of the logdet function. In the rest of this book you will learn
more than you ever (thought you) wanted to learn about these geometric objects and this
convex function, organized as follows.

In the next chapter we study the basic minimum-volume enclosing ellipsoid problem
for the convex hull of a finite set of points. We first consider the centered version of this
problem and derive its dual, showing the relationship to the D-optimal design problem
of statistics. We then obtain optimality conditions for these two problems, and hence
show how the noncentered ellipsoid problem can be reduced to the centered case. John’s
theorem on the goodness of fit of minimum-volume ellipsoids follows.

Chapter 3 considers algorithms for the centered minimum-volume enclosing ellipsoid
problem. Although the functions involved are smooth, and we have closed-form expres-
sions for their derivatives, it turns out that, for large-scale problems, first-order methods
are often more efficient, and these are the focus of our development. We show how rank-
one update formulae make each iteration of Frank–Wolfe-type algorithms very cheap to
perform, and analyze, both from a complexity viewpoint and for its local convergence, a
particular algorithm of this type that incorporates away steps.

In Chapter 4 we consider an extension of the ellipsoid problem in which we seek
an ellipsoidal cylinder of minimum cross-sectional area containing a point set. This
problem is motivated by optimal design in statistics, but also has an appealing geometric
nature. We again consider the dual problem and optimality conditions, but these are more
complicated than in the ellipsoid case.

Chapter 5 addresses a first-order method for the ellipsoidal cylinder problem. Again,
rank-one update formulae are key to the efficient implementation of this method. As
we shall see, here the situation is quite complicated, and we are only able to establish
convergence results under rather strong conditions.

Finally, in Chapter 6 we consider related problems and methods. In particular, we
discuss a method for dealing with problems of noisy points or outliers; we consider
approximating a body via parallelotopes; and we address the problem of ellipsoid opti-
mization when the body is given as the solution set to a system of linear inequalities.

1.6 Notes and references
The idea of considering the minimum-volume enclosing ellipsoid and proofs of its
existence and uniqueness appeared first in unpublished work of C. Löwner. Proofs in
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10 Chapter 1. Introduction

the literature can be found in Danzer, Laugwitz, and Lenz [22] and Zaguskin [90]. These
authors also consider the related question of the maximum-volume ellipsoid inscribed in
a convex body.

Theorem 1.1 appears in [45] as an application of John’s necessary conditions for
inequality-constrained nonlinear optimization. Amazingly, this early work also allows
a set of constraints indexed by a compact set rather than just a finite set of constraints,
and hence John’s theorem applies when X is any compact body in IRn . John’s necessary
conditions required no assumptions other than differentiability, but when an additional
constraint qualification holds (and there are only a finite number of constraints), Kuhn
and Tucker [55] obtained stronger conditions in 1951. Surprisingly, both John’s (for
a finite number of constraints) and Kuhn and Tucker’s results were anticipated in the
Master’s thesis of Karush [47] in 1939, and the conditions are now known as the Karush–
John and Karush–Kuhn–Tucker conditions.

Our interest throughout in approximating point sets or, more generally, compact
sets by ellipsoids is perhaps a little simplistic, but it scales well with the dimension
and the number of points. More precise information for when the points approximate
a manifold embedded in IRn can be obtained by more sophisticated algorithms with
higher complexity. Amenta et al. [5] give an algorithm for reconstructing surfaces in
IR3, and algorithms for higher dimensions are given in, for example, Niyogi, Smale, and
Weinberger [59] and Chazal, Cohen-Steiner, and Lieutier [19].

We may have been a little too hasty in dismissing the general minimum-volume
ellipsoid problem (1.2.2) as intractable because of its lack of convexity. Note that the
constraints can be written as ‖H 1/2xi − H 1/2 x̄‖ ≤ *n for all i . If we choose as new
variables the positive definite matrix B := H 1/2 and the vector ȳ := H 1/2 x̄ , we can state
the problem in the form

minB ,ȳ −2 lndet(B)
(P ′1) ‖B xi − ȳ‖ ≤*n, i = 1,2, . . . , m, (1.6.1)

which is convex. However, this is still clearly more complex than the centered problem
with linear constraints and, as mentioned, we will reduce the general case to the centered
one in the next chapter.

The topic of optimal design in statistics goes back to Wald [83] and Elfving [25].
Notable results, including the equivalence of D- and G-optimality, were obtained by
Kiefer and Wolfowitz [52, 53], and later contributions were made by Fedorov, Wynn,
Atwood, Sibson, Silvey, Titterington, and Pukelsheim, among others. See the books of
Fedorov [27], Silvey [73], and Pukelsheim [63].

For an account of the use of John’s theorem in the analysis of Banach spaces, see the
book of Pisier [62].

The ellipsoid method was developed by Yudin and Nemirovskii [89] and Shor [69] as
an implementable approximation to an optimal (in the oracle sense) method for convex
programming. Khachiyan [48] later used it to prove the polynomial solvability of linear
programming. Bland, Goldfarb, and Todd [14] give a survey of the ellipsoid method,
and its consequences in combinatorial optimization are explored in depth in Grötschel,
Lovász, and Schrijver [37].
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Chapter 2

Minimum-Volume
Ellipsoids

Now we begin our consideration of the minimum-volume ellipsoid optimization prob-
lem. In this chapter we discuss the problems from a theoretical point of view, while the
next chapter considers algorithms.

In the first section we obtain the dual of the centered minimum-volume enclosing
ellipsoid (MVEE) problem, which coincides with the D-optimal design problem addressed
in Section 1.3. We prove existence and uniqueness theorems, and derive weak and strong
duality. In Section 2.2 we obtain optimality conditions for the problem and its dual, and
also define notions of approximate optimality.

In Section 2.3 we return to the general minimum-volume enclosing ellipsoid problem,
where the center is not required to be the origin, and we show that this problem can
be reduced to a centered problem in the next higher dimension. This justifies our
concentration on the centered version of the problem throughout this monograph. We
prove John’s theorem on the quality of approximation by the minimum-volume ellipsoid
in Section 2.4.

2.1 Duality, existence, and uniqueness
Recall that the MVEE problem of finding the minimum-volume centered ellipsoid
enclosing a set X that is the convex hull of points xi , i = 1, . . . , m, in IRn can be formulated
as

minH∈Sn f (H ) :=−lndet(H )
(P ) xT

i H xi ≤ n, i = 1,2, . . . , m. (2.1.1)

We assume throughout that the points xi span all of IRn , since otherwise ellipsoids of
arbitrarily small n-dimensional volume circumscribe X. Equivalently, we assume that

X has full row rank, (2.1.2)

where we denote by X the matrix whose columns are the xi ’s,

X := [x1, x2, . . . , xm] ∈ IRn×m .

We say H is feasible for (P ) if it satisfies the constraints and yields a finite objective value,
so that H is positive definite.

If we apply a Lagrange multiplier ui to each constraint, we arrive at the Lagrangian

L(H , u) :=−lndet(H )+
∑

i
ui (x

T
i H xi − n), (2.1.3)

11
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12 Chapter 2. Minimum-Volume Ellipsoids

which is finite for any positive definite H ∈ Sn and u ∈ IRm . If we again denote by e the
vector of 1’s in IRm and employ the very useful notation

U := Diag (u) ∈ Sm ,

we can rewrite the Lagrangian as

L(H , u) =−lndet(H )+H •X U X T − neT u

(for details, see (2.1.6) below). It is immediate that, for any nonnegative u ∈ IRm and H
feasible in (P ),

−lndet(H )≥ L(H , u),

from which we deduce that, for any nonnegative u,

v(P )≥min
H

L(H , u),

where v(P ) denotes the optimal value of (P ). Moreover, since L(H , u) is a strictly convex
function of H with gradient

∇H L(H , u) =−H−1 +X U X T ,

L(H , u) is minimized by H̄ iff X U X T is positive definite and

H̄ = (X U X T )−1.

What if X U X T is positive semidefinite but not positive definite? Then let v ∈ IRn satisfy
X U X T v = 0 and have unit norm, and consider H (λ) := I +λvvT . We have

L(H (λ, u) =−lndet(I +λvvT )+ (I +λvvT ) •X U X T − neT u
=− ln(1+λ)+Trace(X U X T )− neT u,

which tends to−∞ as λ→∞. We conclude that

min
H

L(H , u) =−lndet[(X U X T )−1]+ (X U X T )−1 •X U X T − neT u

= lndet(X U X T )+ n− neT u.

To obtain the best bound on v(P ), we should choose u ∈ IRm
+ to maximize the right-

hand side above. This leads to a first dual problem (we will refine it just below):

(D ′) max
u∈Rm
{lndet(X U X T )+ n− neT u : u ≥ 0}. (2.1.4)

In fact, we can restrict u to satisfy eT u = 1, for the following reason. Any nonnegative û
can be written as λu, where λ is nonnegative and u satisfies eT u = 1, u ≥ 0. Then

lndet(X Û X T )+ n− neT û = lndet[λ(X U X T )]− nλ+ n
= n lnλ+ lndet(X U X T )− nλ+ n,

and this is maximized by choosing λ= 1. To obtain the best bound on v(P ), we are thus
led to consider the dual to the MVEE problem as

maxu∈Rm g (u) := lndet(X U X T )
(D) eT u = 1,

u ≥ 0,
(2.1.5)
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2.1. Duality, existence, and uniqueness 13

which is exactly the D-optimal design problem from Section 1.3! We say that u is feasible
for (D) if it satisfies the constraints and yields a finite objective value, so X U X T must be
positive definite.

Even though it is implicit in the argument above, let us prove weak duality: the short
proof also highlights conditions to ensure equality in primal and dual objective values.

Proposition 2.1. For any H and u feasible in (P ) and (D), respectively,

f (H )≥ g (u).

Proof. First note that

H •X U X T = Tr[HX (
∑

i ui ei eT
i X T )] = Tr(

∑
i ui xT

i H xi )

=
∑

i ui xT
i H xi ≤ neT u = n,

(2.1.6)

using the fact that Tr(AB) = Tr(BA) from (A.1.1) in Appendix A.
Observe that the matrix HX U X T is similar to the positive definite matrix

H 1/2X U X T H 1/2, and hence has n positive eigenvalues λ j , j = 1, . . . , n. The inequality
above shows that the sum of these is at most n.

Now the difference of the objective values is

f (H )− g (u) =−lndet(H )− lndet(X U X T )
=−lndet(HX U X T )
=− ln(

∏
j λ j )

=−n ln(
∏

j λ j )1/n
≥−n ln(

∑
j λ j /n)

≥−n ln(n/n) = 0,

(2.1.7)

where the first inequality follows from the arithmetic-geometric mean inequality and the
second follows from (2.1.6).

The main result of this section shows that (P ) always has a unique optimal solution,
(D) always has an optimal solution, and there is no duality gap. For this we use optimality
conditions for (P ), but in honor of John’s fundamental work on this problem, we use
those of Karush and John rather than the more usual Karush–Kuhn–Tucker conditions.

Theorem 2.2. Under assumption (2.1.2), (P ) has a unique optimal solution H ∗, (D) has an
optimal solution u∗ with X U ∗X T unique, and f∗ := f (H ∗) = g (u∗) =: g ∗.

Proof. We start with (P ). We would like to use the celebrated Weierstrass theorem,
that a continuous function on a compact set attains its minimum, but unfortunately the
set of feasible H is not compact since it is not closed (H must be positive definite, not
just positive semidefinite). We therefore employ a standard trick: since εI is feasible for
sufficiently small positive ε, we can without loss of generality add the constraint that
−lndet(H ) ≤ −lndet(εI ), which defines a closed set containing only positive definite
matrices. Further, the objective function f is continuous on this set.

Next, we see that for each j , µ j e j is a convex combination of the points ±xi , i =
1, . . . , m, for some positive µ j , by (2.1.2). Since all the points ±xi lie in E(H ), so does
µ j e j , and hence the diagonal entry hj j ≤ nµ−2

j . Thus there is a uniform bound on the
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14 Chapter 2. Minimum-Volume Ellipsoids

trace, and hence on the spectral norm, of every feasible H , and this implies that, with
the added constraint, the feasible region is compact and thus an optimal solution exists.
Uniqueness follows since f is a strictly convex function: indeed, if H1 and H2 were two
distinct optimal solutions, then (H1 + H2)/2 would be feasible with a lower objective
value, which is a contradiction.

We could use a similar argument to show the existence of an optimal solution to
(D). Here the feasible region is bounded, but not closed, since some points like e1,
where the objective function is negative infinity, are not feasible. We could again add
an additional constraint, but this doesn’t help us to establish strong duality, so we use a
different approach.

Problem (P ) is a nonlinear programming problem, even if it lies in the rather
unfamiliar space of symmetric matrices. If we add an extra constraint using εI as above,
and choose ε> 0 suitably, all the functions will be differentiable in a neighborhood of the
feasible region, and the optimal solution will not satisfy the new constraint with equality.
We now use the Karush–John optimality conditions at the optimal solution H ∗. These
imply that there are nonnegative multipliers, not all zero: τ for the objective function
and ui for the ith constraint in (P ), i = 1, . . . , m, such that

−τ(H ∗)−1+
∑

i ui xi xT
i = 0,

ui (xT
i H ∗xi − n) = 0, i = 1, . . . , m.

(2.1.8)

Here we have used the fact that the gradient of−lndet(H ) is−H−1 and that the constraint
function xT

i H xi − n can be written as xi xT
i •H − n, so that its gradient is xi xT

i .
Let us first take the scalar product of the first line of (2.1.8) with H ∗. We get

−nτ+
∑

i
ui xi xT

i •H ∗ = 0,

and using the fact that xi xT
i •H ∗ = xT

i H ∗xi = n whenever ui > 0 (from the second line
of (2.1.8)), this gives

∑
i ui = τ. We deduce that τ cannot be zero, because then all the

ui ’s would also be zero, so without loss of generality we can assume τ = 1 by scaling all
the multipliers. Then (writing u for the m-vector of the scaled ui ’s)

eT u = 1, u ≥ 0,

and u is feasible for (D).
The first line of (2.1.8) now states that

(H ∗)−1 =X U X T ,

with U as always denoting Diag (u), and hence

−lndet(H ∗) = lndet[(H ∗)−1] = lndet(X U X T ).

Hence the primal feasible solution H ∗ and the dual feasible solution u have the same
objective values, and thus weak duality implies that both (in particular u) are optimal and
that there is no duality gap.

It remains to show that X U ∗X T is unique for optimal solutions u∗. Indeed, if ū and
û were both optimal, and X Ū X T and X Û X T were distinct, then u := (ū + û)/2 would
be feasible, and its objective value lndet[(X Ū X T +X Û X T )/2] would be strictly greater
than those for ū and û, which is a contradiction.
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2.1. Duality, existence, and uniqueness 15
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Figure 2.1. Minimum-area ellipse.

In fact, since the space of symmetric matrices of order n has dimension n(n + 1)/2,
it is sufficient to use just this many positive ui ’s, 1 ≤ i ≤ m, in (2.1.8). This implies that
there is an optimal solution to (D) with only n(n + 1)/2 positive components, and also
that the minimum-volume centered ellipsoid containing the points xi corresponding to
these positive ui ’s is also the minimum-volume centered ellipsoid containing them all;
that is, we have a small core set. (The difference between the estimate here, n(n + 1)/2,
and that in Chapter 1, n(n+ 3)/2, is due to the fact that earlier we were concerned with
not-necessarily-centered ellipsoids.)

Example 2.3. Suppose we want the minimum-volume centered ellipse containing the
four points that are the columns xi , i = 1,2,3,4, of

X =
$ −1 −1 1 2

1 −1 −1 2

%

in IR2. If we set u := (0;0;1/2;1/2), we find

X U X T =
$

5/2 3/2
3/2 5/2

%
, H := (X U X T )−1 =

$
5/8 −3/8
−3/8 5/8

%
.

It is then easy to check that xT
i H xi ≤ 2 for all i , with equality for i = 1,3,4, and so H

is feasible for the primal problem and u is for the dual. Moreover, their objective values
are both ln4, and hence both are optimal. We also note that ū := (1/2;0;0;1/2) is also
optimal for the dual, but yields the same matrix X U X T .

The points and the corresponding minimum-volume centered ellipse (in red) are
shown in Figure 2.1.

Example 2.4. Now let us consider the case where m = n, so that the number of points
is equal to the dimension. Suppose we set u = e/n. Since the matrix X has full rank and
is square, it is nonsingular, and so H := (X U X T )−1 = nX−T X−1. We find

xT
i H xi = nxT

i X−T X−1xi = neT
i ei = n,

so that H is feasible for the primal problem and u is for the dual. Their objective values
are both 2 ln(|detX |)− n ln n, so both are optimal.
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16 Chapter 2. Minimum-Volume Ellipsoids

2.2 Optimality conditions
Now that we know that strong duality holds, we can state some necessary and sufficient
optimality conditions. Indeed, one reason we gave an explicit proof of weak duality in
Proposition 2.1 (weak duality holds automatically for the Lagrangian dual) is so that we
could easily identify conditions for strong duality.

Proposition 2.5. Necessary and sufficient conditions for H and u to be optimal in (P ) and
(D), respectively, are

(a) eT u = 1, u ≥ 0, and xT
i H xi ≤ n for i = 1, . . . , m;

(b) H = (X U X T )−1; and
(c) xT

i H xi = n if ui > 0, i = 1, . . . , m.

Proof. Condition (a) (and the nonsingularity implied by (b)) says merely that H and
u are feasible in their respective problems. Then Theorem 2.2 implies that necessary
and sufficient conditions for optimality are f (H ) = g (u). From (2.1.7) this holds iff
the positive eigenvalues of HX U X T are all equal (so their geometric mean equals their
arithmetic mean) and that its trace is equal to n. In turn, this follows iff all eigenvalues
are 1, so that H = (X U X T )−1. Moreover, from (2.1.6), the trace can only equal n if (c)
above holds.

Using (b) above, we can write these conditions solely with respect to the dual solution
u.

Proposition 2.6. A feasible solution u to (D) is optimal (and H (u) is optimal in (P )) iff
(i) H (u) := (X U X T )−1 is feasible in (P ) and
(ii) xT

i H (u)xi = n if ui > 0, i = 1, . . . , m.

Indeed, condition (i) above implies condition (ii): from (i),

n =H (u) •X U X T =
∑

i
ui xT

i H (u)xi ≤
∑

i
nui = n,

since H (u) is feasible in (P ), so (ii) follows.
Henceforth, we will use H (u) to denote the matrix above.

Definition 2.7. If u is nonnegative and X U X T is positive definite, then H (u) denotes
(X U X T )−1.

From these conditions, we see again the optimality of u and H (u) in Example 2.3,
without the necessity of checking their objective values.

Let us use these results to show the equivalence of D-optimality and G-optimality in
optimal design—see Section 1.3. Indeed, if u∗ is D-optimal, it solves (D), and then we
know from Proposition 2.5 that H = (X U ∗X T )−1 is optimal in (P ), so that

max
i

xT
i (X U ∗X T )−1xi ≤ n.

On the other hand, for any nonnegative u with eT u = 1,
∑

i
ui xT

i (X U X T )−1xi = (X U X T ) • (X U X T )−1 = Trace(I ) = n,
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2.3. Relaxing the centered restriction 17

so that maxi xT
i (X U X T )−1xi ≥ n. This shows that u∗ minimizes this maximum, i.e.,

that it is G-optimal.
Conversely, if ū is G-optimal, then it minimizes maxi xT

i (X U X T )−1xi . Since this
quantity is at most n for u∗, it is also at most n for ū, which implies that ū satisfies the
optimality condition (i) in Proposition 2.6, and hence is also D-optimal.

We will use these optimality conditions in our algorithms. Indeed, to terminate the
methods with a guaranteed quality of solution, we state some approximate optimality
conditions.

Definition 2.8. A feasible u is said to be ε-primal feasible if H (u) := (X U X T )−1 satisfies

xT
i H (u)xi ≤ (1+ ε)n, i = 1, . . . , m.

If moreover, it satisfies

xT
i H (u)xi ≥ (1− ε)n if ui > 0, i = 1, . . . , m,

we say that u is ε-approximately optimal, or that it satisfies the ε-approximate optimality
conditions.

We say a solution is within δ of being optimal in a problem if it is feasible and its
objective value is within δ of the optimal value of the problem.

We can now prove

Proposition 2.9. If u is ε-primal feasible (and a fortiori if it is ε-approximately optimal), then
u and (1+ ε)−1H (u) are both within n ln(1+ ε), which is at most nε, of being optimal in
their respective problems. Moreover, E((1+ ε)−1H (u)) contains all xi and is within a factor
of (1+ ε)n/2 of the minimum-volume such ellipsoid.

Proof. From the definition above, both these solutions are feasible. Moreover, the
corresponding duality gap is

f ((1+ ε)−1H (u))− g (u) = n ln(1+ ε)+ f (H (u))− g (u) = n ln(1+ ε)≤ nε,

and this proves the first result using weak duality. The second follows by the primal
feasibility of (1+ ε)−1H (u) using (1.2.1).

2.3 Relaxing the centered restriction
In Chapter 1 we claimed that the not-necessarily-centered minimum-volume ellipsoid
problem could be reduced to the centered case. Here we show how this can be done.

Suppose we seek the minimum-volume ellipsoid containing a set

Y := conv({y1, . . . , ym}),

where each yi ∈ IRd . We let Y denote the matrix whose columns are these points:

Y := [y1, y2, . . . , ym] ∈ IRd×m .

We now assume without loss of generality that the affine hull of the points yi is IRd ; that
is, any point y ∈ IRd can be expressed as a linear combination

∑
i λi yi , where the weights
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18 Chapter 2. Minimum-Volume Ellipsoids

λi sum to 1. Note that this is the same as saying that any point (y; 1) can be written as a
linear combination of the m points xi := (yi ; 1) in IRd+1, or equivalently, that the points
xi span IRn , where n := d + 1. (We use notation similar to that of MATLAB, so xi is a
column vector with a 1 for its last component and the components of yi for its first d
components.) Note that, if matrix X is defined as before, we have

X =
$

Y
eT

%
. (2.3.1)

Observe that the points xi can be viewed as copies of the points yi embedded in IRd ×
{1}⊆ IRn . The extra dimension allows the center of the ellipsoid in this hyperplane to be
wherever it likes to minimize the volume. The most natural n-dimensional problem to
solve now is to find a centered ellipsoidal cylinder in IRn containing all the points xi and
having the minimum-d -volume intersection with IRd × {1} ⊆ IRn . This minimum-area
ellipsoidal cylinder (MAEC) problem will be considered in Chapters 4 and 5, and we shall
see that it is considerably harder than the MVEE problem. In our case, where all points xi
lie in the hyperplane at height 1, solving an MVEE problem suffices: we shall now show
that the minimum-volume ellipsoid containing the yi ’s can easily be obtained from the
minimum-volume centered ellipsoid containing the xi ’s, which is our desired reduction.

Theorem 2.10. With the assumption and notation above, suppose u∗ and H ∗ = (X U ∗X T )−1

are optimal solutions to (D) and (P ), respectively (defined using the points xi , i = 1, . . . , m).
Then the unique minimum-volume ellipsoid containing the points yi , i = 1, . . . , m, is
E(H ∗Y Y , ȳ), where H ∗Y Y is the d × d leading submatrix of H ∗ and ȳ := Yu∗.

Proof. First consider an arbitrary ellipsoid E(HY Y , ŷ) containing the points yi , so that

(yi − ŷ)T HY Y (yi − ŷ)≤ d , i = 1, . . . , m.

Then we have also

&
yi − ŷ

1

'T $ HY Y 0
0 1

%&
yi − ŷ

1

'
≤ n, i = 1, . . . , m,

or

&
yi
1

'T $ I 0
−ŷT 1

%$
HY Y 0

0 1

%$
I −ŷ
0 1

%&
yi
1

'
≤ n, i = 1, . . . , m.

This shows that all points xi lie in E(H ), where

H :=
$

I 0
−ŷT 1

%$
HY Y 0

0 1

%$
I −ŷ
0 1

%

=
$

HY Y −HY Y ŷ
−(HY Y ŷ)T 1+ ŷT HY Y ŷ

%
.

(2.3.2)

Note that det H = det HY Y , so that −lndet(HY Y ) =−lndet(H )≥−lndet(H ∗).
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2.3. Relaxing the centered restriction 19

Now suppose that H ∗ and u∗ are optimal for (P ) and (D), respectively. Then we know
from Proposition 2.5 that

H ∗ = (X U ∗X T )−1

=
($

Y
eT

%
U ∗

$
Y
eT

%T)−1

=
*+

Y U ∗Y T ȳ
ȳT 1

,-−1

=
&$

I ȳ
0 1

%$
Y U ∗Y T − ȳ ȳT 0

0 1

%$
I 0

ȳT 1

%'−1

=
$

I 0
−ȳT 1

%$
(Y U ∗Y T − ȳ ȳT )−1 0

0 1

%$
I −ȳ
0 1

%
,

(2.3.3)

where ȳ := Yu∗. Let us set H ∗Y Y := (Y U ∗Y T − ȳ ȳT )−1; we note that this is the leading
d × d principal submatrix of H ∗ and that det H ∗ = det H ∗Y Y so that −lndet(H ∗Y Y ) =
−lndet(H ∗).

Now E(H ∗) contains all the points xi , so for all i ,

&
yi
1

'T $ I 0
−ȳT 1

%$
H ∗Y Y 0

0 1

%$
I −ȳ
0 1

%&
yi
1

'
≤ n,

or
(yi − ȳ)T H ∗Y Y (yi − ȳ)≤ d , (2.3.4)

so that E(H ∗Y Y , ȳ) contains Y and its volume is related to −lndet(H ∗Y Y ) ≤ −lndet(HY Y ).
This proves the minimality of this ellipsoid, and uniqueness follows from the same
arguments, using the fact that the minimum-volume ellipsoid containing the xi ’s (and
hence H above) is unique.

Using Proposition 2.5 and the proof above, we obtain the following.

Corollary 2.11. A necessary and sufficient condition for

{y ∈ IRd : (y − ȳ)T H (y − ȳ)≤ d}

to be the minimum-volume ellipsoid containing Y as above is the existence of u ∈ IRm

satisfying

(a) H = (Y U Y T −Yu uT Y T )−1, ȳ = Yu;

(b) eT u = 1, u ≥ 0, and (yi − ȳ)T H (yi − ȳ)≤ d , i = 1, . . . , m; and

(c) (yi − ȳ)T H (yi − ȳ) = d if ui > 0, i = 1, . . . , m.

Example 2.12. We return to Example 2.3, but now we seek the minimum-volume not-
necessarily-centered ellipse containing the four points yi that are the columns of

Y =
$ −1 −1 1 2

1 −1 −1 2

%
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20 Chapter 2. Minimum-Volume Ellipsoids

in IR2. (Note that we have changed notation to be consistent with that above.) We add a
final component 1 to each point to get the columns xi of the matrix

X =



−1 −1 1 2
1 −1 −1 2
1 1 1 1




in IR3. Let us set u := (9/32;4/32;9/32;10/32), so that ȳ = Yu = (1/2;1/2) and

Y U Y T =
$

31/16 13/16
13/16 31/16

%
;

these can be seen as submatrices of

X U X T =




31/16 13/16 1/2
13/16 31/16 1/2
1/2 1/2 1


 .

Then we find that

H ∗Y Y := (Y U Y T −Yu uT Y T )−1 =
$

27/16 9/16
9/16 27/16

%−1

=
$

2/3 −2/9
−2/9 2/3

%
.

H ∗Y Y can also be found as a submatrix of

H = (X U X T )−1 =




2/3 −2/9 −2/9
−2/9 2/3 −2/9
−2/9 −2/9 11/9


 .

Then (yi− ȳ)T H ∗Y Y (yi− ȳ) = 2 for each i , so that all points yi lie in the ellipse E(H ∗Y Y , ȳ),
which is the minimum-area ellipse containing them. Figure 2.1 also shows this ellipse (in
green).

2.4 Quality of fit of minimum-volume enclosing ellipsoids
We now have the machinery to prove John’s fundamental theorem on the degree of fit of
ellipsoids to convex bodies formed as convex hulls of finite sets of points.

Theorem 2.13. Let E∗ be the minimum-volume ellipsoid containing the convex body X =
conv{x1, x2, . . . , xm} in IRn .

(a) The homothetic scaling 1
nE∗ is contained in X.

(b) Further, if X is symmetric (−X=X), then 1,
nE∗ is contained in X.

Proof. We begin with (b). Since X is symmetric, if E∗ contains X, then so does−E∗. Now
the minimum-volume enclosing ellipsoid is unique, which implies that E∗ is centered,
and hence is the minimum-volume centered ellipsoid E(H ), where H and u are optimal
solutions to (P ) and (D), respectively. Moreover, by Proposition 2.5, H = (X U X T )−1.
In this notation,

Ē :=
1,
n
E∗ =

1,
n
{x ∈ IRn : xT H x ≤ n}= {x ∈ IRn : xT H x ≤ 1}.
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2.4. Quality of fit of minimum-volume enclosing ellipsoids 21

How can we show that this set is contained in X? We use the support function of each. If
D is a convex set in IRn , its support function is defined by δ∗D (c) := max{cT d : d ∈ D};
it is easy to show that D1 ⊆ D2 iff δ∗D1

≤ δ∗D2
pointwise. So let c be a nonzero vector

in IRn . Using (1.1.6), we find that the maximum value of cT x over Ē is
,

cT H−1c =2
cT (X U X T )c . Now

cT (X U X T )c =
∑

i
ui (c

T xi )
2 ≤max

i
(cT xi )

2 = (max
i

cT xi )
2,

where the last step uses the fact that X = −X, so that min j cT xj = −maxi cT xi . Hence
the maximum of cT x over Ē is at most the maximum of the cT xi ’s, which is the maximum
of cT x over X. This shows that Ē is contained in X as desired.

Now we turn to the general case (a). It is helpful here to change the notation to fit
better with that of the previous section concerning the not-necessarily-centered case. So
suppose Y is the convex hull of the points yi , i = 1, . . . , m, in IRd , and let Y := [y1, . . . , ym].
Then, according to (2.3.4), we can find u ∈ IRm with eT u = 1, u ≥ 0, such that

E∗ = {y ∈ IRd : (y − ȳ)T (Y U Y T −Yu uT Y )−1(y − ȳ)≤ d}
with ȳ =Yu. Then

Ē :=
1
d
E∗ =

3
y ∈ IRd : (y − ȳ)T (Y U Y T −Yu uT Y )−1(y − ȳ)≤ 1

d

4
.

We want to show that this is contained in Y. Let us choose a nonzero c ∈ IRd , so that the
maximum of cT y over Ē is, using again (1.1.6),

cT ȳ +
1,
d

5
cT (Y U Y T −Yu uT Y )c = cT ȳ +

1,
d

6∑
i

ui (cT yi − cT ȳ)2. (2.4.1)

We want to show that this is at most maxi cT yi . Of course, we can choose any scale we
want for c : let us assume without loss of generality that

cT (Y U Y T −Yu uT Y )c = 1.

Then we want to show that maxi cT yi − cT ȳ is at least 1/
,

d . Let us consider a random
variable Z which takes the value zi := cT yi − cT ȳ with probability ui . Since ȳ = Yu, it has
mean 0. In view of (2.4.1), our assumption above shows that Z has variance 1. Also, our
scaling of c and the fact that all yi ’s lie in E∗ implies by the generalized Cauchy–Schwarz
inequality (see Section A.2) that all zi ’s are at least −

,
d .

Now suppose that maxi zi = α. Let us “center” Z to get the random variable

Ẑ := Z − α−
,

d
2

.

Then the values that Ẑ takes are at most (α+
,

d )/2 in absolute value, and we therefore
obtain (

α+
,

d
2

)2

≥ EẐ2 = var(Ẑ)+
(
α−
,

d
2

)2

= 1+
(
α−
,

d
2

)2

,

since Ẑ and Z have the same variance and EZ = 0. This yields α≥ 1/
,

d , which is what
we wanted to show.
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22 Chapter 2. Minimum-Volume Ellipsoids

Note that the ratios are tight: for the nonsymmetric case, consider a regular n-simplex,
and for a symmetric example, consider the n-cube (or the n-crosspolytope, the convex hull
of all the plus and minus unit coordinate vectors).

We further remark that the proof shows that, for any u feasible for (D),

{x ∈ IRn : xT H (u)x ≤ 1}⊆ conv{±x1, . . . ,±xm}.
The minimum-area ellipse for Example 2.3, as well as a copy shrunk by

,
2 and the

convex hull of {±x1, . . . ,±x4}, are shown in Figure 2.2.

5 5 5 0 0.5 1 1.5 2 2.5
5

5

5

0

0.5

1

1.5

2

2.5

Figure 2.2. Illustration of John’s theorem.

2.5 Notes and references
The possible duality relationship between (P ) and (D) was raised by Silvey [74] in a
discussion of two papers on optimal design, and answered affirmatively by Sibson [70]
in the same discussion. (The comments by Kiefer in the same discussion are worth
reading if only from a sociological point of view.) Necessary optimality conditions for the
general minimum-volume ellipsoid problem were obtained by John [45], and necessary
and sufficient conditions for the centered problem are implicitly present in Kiefer and
Wolfowitz’s proof [53] of the equivalence of D- and G-optimality. The notion of ε-primal
feasibility was introduced by Khachiyan [49], while ε-approximate optimality was defined
by Ahipaşaoğlu, Sun, and Todd [3]. The relation between minimum-volume ellipsoids
not necessarily centered in IRd and those centered in IRd+1 appears in Titterington [79] and
later in Khachiyan and Todd [50]. Our proof is from Kumar and Yıldırım [56].

We confine ourselves to discrete point sets {x1, . . . , xm} (and their convex hulls X)
throughout, both for simplicity and because we are interested in algorithms, but problems
(P ) and (D) can be stated in a more general setting. If X is a compact subset of IRn , the
problem of finding a minimum-volume centered ellipsoid containing X can be formulated
as the semi-infinite programming problem

(P ) min
H∈Sn
{−lndet(H ) : xT H x ≤ n for all x ∈X}.

Its dual has as its variable a (probability) measure µ on X, and can be written as

(D) max
µ

7
lndet

*∫

X
xxT dµ

-
:
∫

X
dµ= 1,µ nonnegative

9
.
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2.5. Notes and references 23

This duality relationship is due to Sibson [70]; see also Gürtuna [39], where the duals for
this problem and for the maximum-volume inscribed ellipsoid problem are derived using
semi-infinite programming. In fact, John’s optimality conditions imply that it suffices to
consider discrete measures µ, which put positive measure on a finite subset of points of
X, but it is sometimes simpler to consider arbitrary (Borel) measures µ. Analogues of
the results we have proved hold in this setting also. For example, a feasible µ is optimal
in (D) iff H := (

∫
xxT dµ)−1 satisfies xT H x ≤ n for all x ∈ X, and µ is supported on

{x ∈X : xT H x = n}.
The duality we have exhibited in this chapter has been used to explicitly find optimal

designs in several statistical settings. It can also be used to obtain explicit formulae for the
new ellipsoids after an iteration of the ellipsoid method. The minimum-volume ellipsoid
E(H , ŷ ) containing Eαβ in (1.4.1) has

ŷ =
∫

Eαβ
ydµ, H =

;∫

Eαβ
yyT dµ− ŷ ŷT

<−1

for a suitable probability measure µ on Eαβ. This measure puts a certain measure
uniformly on the “latitude”

{y ∈ ∂ E : aT (y − ȳ) = α}

and the rest uniformly on
{y ∈ ∂ E : aT (y − ȳ) =β}

(if β = 1, this is a point mass on the point that maximizes aT y over E). The particular
weights are easily obtained by calculus from (D), and then the optimality of the resulting
ellipsoid can be checked using duality. The algebraic details are omitted.

The technique above is more systematic and flexible than the ad hoc methods of
obtaining the successive ellipsoids in König and Pallaschke [54] and Todd [80]. See also the
related independent work of Fogel and Huang [29] in the system identification context.

D
ow

nl
oa

de
d 

07
/1

5/
16

 to
 1

32
.2

39
.1

.2
31

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



Chapter 3

Algorithms for the MVEE
Problem

Here we will consider methods for solving the MVEE problem

minH∈Sn f (H ) :=−lndet(H )
(P ) xT

i H xi ≤ n, i = 1,2, . . . , m,

and its dual
maxu∈Rm g (u) := lndet(X U X T )
(D) eT u = 1,

u ≥ 0.

Since these problems cannot usually be solved exactly, we will be interested in finding
ε-primal feasible or ε-approximately optimal solutions; see Definition 2.8.

Problem (P ) has linear constraints and a convex objective function; moreover, its
objective function is smooth with simple formulae for its first two derivatives:

∇(−lndet)(H ) =−H−1, D2(−lndet)(H )[E1, E2] = (H
−1E1H−1) • E2

(see Section A.4).
Similarly, (D) has as its feasible region the unit simplex in IRm , and the chain rule

gives its first two derivatives using those of the lndet function. Indeed, the gradient of the
logdet function is the inverse of its argument, and the derivative of X U X T with respect to
ui is just xi xT

i . Hence the chain rule shows that ∂i lndet(X U X T ) = (X U X T )−1 • xi xT
i ,

where ∂i denotes the partial derivative with respect to ui . Next, (A.4.4) in Appendix
A gives the directional derivative of the inverse, from which ∂ j∂i lndet(X U X T ) =
[−(X U X T )−1xj xT

j (X U X T )−1] • xi xT
i . Thus,

ω(u) :=∇g (u) = (xT
i H (u)xi )

m
i=1,

(∇2 g (u))i j =−(xT
i H (u)xj )

2, i , j = 1, . . . , m,

where, as in the previous chapter,

H (u) := (X U X T )−1.

These simple formulae suggest that it would be worthwhile to use second-order
algorithms related to Newton’s method to optimize (P ) and (D). However, the necessity
of computing inverses of (or at least factorizing) n × n matrices at each iteration makes

25
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26 Chapter 3. Algorithms for the MVEE Problem

these quite costly in a large-scale setting. We will therefore concentrate on first-order
methods for solving (D).

Note that even these seem to require us to invert n × n matrices: see the formula
for ω(u) above. However, if we employ a coordinate-ascent-type algorithm, where only
one component of u is altered at each iteration, then X U X T changes by a rank-one
modification and its inverse is easily updated.

Two comments need to be made. First, coordinate ascent is usually not viewed as a
first-order method: the latter term is normally confined to algorithms of “steepest-ascent”
or conjugate-gradient type. However, note that steepest ascent with respect to the $1-norm
gives a direction that is plus or minus a unit coordinate vector, and hence is a variant of
coordinate ascent. Second, coordinate ascent cannot stay on the unit simplex: we will
deal with this by renormalizing to maintain the sum of the components equal to 1.

The first section below describes two coordinate-ascent algorithms for (D) and how
they can be implemented efficiently. In Section 3.2 we describe how to initialize the
methods. Then Section 3.3 discusses the global convergence and complexity of the
algorithms, and Section 3.4 their local convergence. In Section 3.5 we describe an
intriguing relationship between the algorithms we have described and the deepest two-
sided cut ellipsoid algorithm applied to the polar polytope. Section 3.6 shows how the
points xi can be eliminated during the course of the algorithms to improve efficiency. A
potential application to spectral sparsification of graphs is discussed in Section 3.7, and
then Section 3.8 illustrates the algorithms with computational results.

3.1 Coordinate-ascent algorithms
Let us suppose that we have a current feasible point u for (D); recall that this means that u
satisfies the constraints, so u is nonnegative and eT u = 1, and that the objective function
g (u) = lndet(X U X T ) is finite, so X U X T is positive definite. Suppose we also have at
our disposal

ω :=ω(u) =∇g (u) = (xT
i H xi )

m
i=1, (3.1.1)

where H :=H (u) := (X U X T )−1, and a scaled Cholesky factorization of X U X T :

X U X T =φ−1LLT (3.1.2)

withφ positive. We will continue to talk about scaled Cholesky factorizations of X U X T

in what follows, but it is important to note that it is more numerically stable to compute
these via a QR factorization of U 1/2X T , where U 1/2 is a diagonal matrix with the square
roots of the components of u on its diagonal. If U 1/2X T =QR, with Q an m×n matrix
with orthonormal columns and R an upper triangular n× n matrix, it is easy to see that
X U X T = RT R. We use this factorization initially and when it is deemed worthwhile to
refactorize; at other iterations, the Cholesky factor RT is updated to maintain the scaled
Cholesky factorization.

Consider the following update of u:

u+ := (1−τ)u +τei (3.1.3)

with τ not equal to 1 and ei the ith unit coordinate vector, which is also a vertex of the
feasible region of (D). Note that u+ can also be viewed as the result of taking a coordinate-
ascent step to

û := u +λei
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3.1. Coordinate-ascent algorithms 27

with λ := τ/(1− τ), followed by a scaling to keep the coordinate sum equal to 1: u+ =
(1+λ)−1 û = (1−τ)û. We see that u+ remains nonnegative and not equal to ei as long as

−ui ≤ λ<∞, (3.1.4)

which we henceforth assume.
While this seems a very limited choice of an updated u, it leads to the following crucial

fact. In this case, X U+X T is a scaled rank-one update of X U X T :

X U+X T = (1+λ)−1(X U X T +λxi xT
i ). (3.1.5)

As seen in Section A.3, this provides simple update formulae for the determinant and the
inverse of X U+X T . From Corollary A.10 and Theorem A.11, we have

Proposition 3.1.

det(X U+X T ) = (1+λ)−n (1+λωi )det(X U X T )

and, if 1+λωi is positive, X U+X T is positive definite with

(X U+X T )−1 = (1+λ)
!

H − λ
1+λωi

H xi xT
i H

"
.

From this we obtain

g (u+)− g (u) =−n ln(1+λ)+ ln(1+λωi ) (3.1.6)

and, if x̂ :=H xi ,

ωh(u+) = (1+λ)
!
ωh −

λ
1+λωi

(x̂T xh )
2
"

(3.1.7)

for each h. In particular,

ωi (u+) = (1+λ)
#
ωi −

λω2
i

1+λωi

$
=
(1+λ)ωi

1+λωi
. (3.1.8)

Note that x̂ can easily be obtained from the scaled Cholesky factorization of X U X T .
Moreover, since

φ(1+λ)X U+X T = LLT +φλxi xT
i

is a rank-one modification of a Cholesky factorization, we can obtain a scaled Cholesky
factorization of X U+X T in O(n2) operations.

An iteration of each of our algorithms consists in replacing u by u+ as above, with
specific choices for i and λ. In both cases, λ is chosen to maximize g (u+), viewed as a
function γ (λ) of the chosen stepsize. From (3.1.6) we find

γ ′(λ) =− n
1+λ

+
ωi

1+λωi
.

From this, a little analysis and algebra yield that the optimal λ is the unique root of γ ′,

λ∗ :=
ωi − n
(n− 1)ωi

, (3.1.9)
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28 Chapter 3. Algorithms for the MVEE Problem

yielding an increase in g of

(n− 1) ln
!
(n− 1)ωi

n(ωi − 1)

"
+ ln

%ωi

n

&
(3.1.10)

as long as the formula gives λ∗ ≥ −ui . If this condition fails, γ ′(λ) is negative for all feasible
λ and so the optimal λ is −ui . The reader should check that, if λ= λ∗, thenωi (u+) = n,
and consider why this is to be expected.

How should we choose the index i? We will give several motivations. First, recall our
initial statement of a dual problem for (P ): in (2.1.4) we gave an optimization problem
(D ′) over just the nonnegative orthant, where we wanted to maximize g (u)+ n− neT u.
Since there is no equality constraint, coordinate ascent is quite natural for this problem.
The gradient of the objective function of (D ′) at u is ω − ne , and steepest ascent with
respect to the $1-norm would lead to a choice of i withωi −n maximal or j withω j −n
minimal. Of course, we cannot decrease components that are already zero, so we should
confine our choice for j to those indices with uj > 0.

Next, let us consider the optimality conditions for (D). If we just consider condition
(i) of Proposition 2.6, we see that the worst violation of the condition occurs for i with
ωi −n maximal. If we consider also condition (ii), we should also examine j with uj > 0
andω j − n minimal. Here we should note that

uTω =
∑

i
ui xT

i H xi =
(∑

ui xi xT
i

)
•H = (X U X T ) • (X U X T )−1 = n, (3.1.11)

so that, unless u is optimal, there is always an index i with ωi > n and an index j with
uj > 0 and ω j < n. Note that, if u is ε-primal feasible but not ε′-primal feasible for any
ε′ < ε, index i above is the critical index with xT

i H xi = (1+ ε)n. Similarly, if u is ε-
approximately optimal but not ε′-approximately optimal for any ε′ < ε, the critical index
is either i with xT

i H xi = (1+ ε)n or j with uj > 0 and xT
j H xj = (1− ε)n.

For our third motivation, let us make a first-order linear (Taylor) approximation to
the objective function g :

g (u +∆u)≈ g̃ (u +∆u) := g (u)+ωT∆u.

We might then consider maximizing this linear function over the feasible region, the unit
simplex. A linear function is maximized at a vertex, and clearly that vertex is the unit
vector ei where ωi is maximal. Of course, the true function g is nonlinear, and so our
linear approximation is only appropriate close to the current solution u. Hence we might
wish to move along the line from u towards ei , i.e., consider points of the form (3.1.3)
for positive τ. This is the motivation for the classical Frank–Wolfe algorithm. It was
independently proposed for the particular problem (P ) by Fedorov and Wynn (the latter
with a fixed rather than optimal stepsize). We therefore refer to it unambiguously as the
FW Algorithm.

The current solution u can be viewed as a convex combination of all the e j ’s with
uj > 0. Some of these vertices are better than others, and it therefore makes sense to
reduce the weight on the worst vertex. According to g̃ , this is the vector e j with uj > 0
andω j minimal. Hence we might wish to move along the line from e j to u extended, or
in other words, move away from ej . This is again a point of the form (3.1.3), now with j
replacing i and with negative τ. The resulting method (choosing either ei with maximal
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3.1. Coordinate-ascent algorithms 29

ωi or e j with minimal ω j ) is Wolfe’s algorithm with away steps. It was independently
proposed for the problem (D) by Atwood, and so we will refer to it as the WA Algorithm.

Let us state these algorithms more formally.

ALGORITHM 3.1.
(FW Algorithm)

Step 0. Choose u feasible for (D) and ε> 0.
Compute ω =ω(u) and a (scaled) Cholesky factorization of X U X T .
Step 1. Given the current iterate u and its associated ω := ω(u), compute ε+ :=
maxh(ωh − n)/n, and let h = i attain the maximum.
If ε+ ≤ ε, STOP: u is ε-primal feasible. Otherwise, go to Step 2.
Step 2. Compute λ∗ from (3.1.9) and update u← (1+λ∗)−1(u +λ∗ei ).
Step 3. Update ω and a scaled Cholesky factorization of X U X T and go to Step 1.

ALGORITHM 3.2.
(WA Algorithm)

Step 0. Choose u feasible for (D) and ε> 0.
Compute ω =ω(u) and a (scaled) Cholesky factorization of X U X T .
Step 1. Given the current iterate u and its associated ω := ω(u), compute ε+ :=
maxh(ωh − n)/n, with h = i attaining the maximum, and ε− := maxh{(n −ωh)/n :
uh > 0}, with h = j attaining the maximum.
If max{ε+,ε−}≤ ε, STOP: u is ε-approximately optimal.
Otherwise, if ε+ > ε−, go to Step 2; else go to Step 3.
Step 2. Compute λ∗ from (3.1.9) and update u← (1+λ∗)−1(u +λ∗ei ). Go to Step 4.
Step 3. Set λ=max{−uj ,λ

∗}, where j replaces i in the definition of λ∗ in (3.1.9). Update
u← (1+λ)−1(u +λe j ). Go to Step 4.
Step 4. Update ω and a scaled Cholesky factorization of X U X T and go to Step 1.

As stated, both algorithms only update ω and a scaled Cholesky factorization.
However, it might be advisable to recompute these from time to time. Here is a suggested
implementation. At each iteration, i (or possibly j in the WA Algorithm) is first chosen.
Then it is necessary to compute x̂ = H xi (or possibly x̂ = H xj ; below we assume that
H xi is needed, but obvious changes can be made in the latter case) in order to update ω:
see (3.1.7). This is done by first calculating z = L−1 xi . At this stage we can find a new
estimate for ωi : φzT z. If the relative error of the old value compared to this exceeds,
say, 10−8, we can recompute X U X T and its Cholesky factorization (actually the QR
factorization of U 1/2X T , as discussed above), and hence recompute ω. Otherwise, we
proceed to compute x̂ = φL−T z and continue with the updated quantities. In addition,
every, say, max{n, 50000} iterations, we can recompute X U X T and compareφX U X T to
LLT ; again, if the relative error exceeds some threshold, we can recompute the Cholesky
factorization and hence ω.

Each iteration requires O(n2) arithmetic operations to compute x̂ and update the
scaled Cholesky factorization of X U X T . Selecting i or j and obtaining the optimal
stepsize require O(m) and O(1) work. The dominant work at each iteration is updating
ω, which requires O(mn) arithmetic operations to calculate each x̂T xh . Moreover, if we
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30 Chapter 3. Algorithms for the MVEE Problem

only refactorize every Ω(n) iterations, the average work from refactorizing is also only
O(n2). The cheapness of the iterations in our algorithms, together with their (relatively)
attractive convergence properties, leads to their efficiency.

3.2 Initialization
We now discuss two ways to choose the initial vector u. The first choice is due to
Khachiyan and is very straightforward: we choose u = uK := e/m, putting equal weight
on each point. Nevertheless, this choice provides a guaranteed quality of approximation.
To state the next result, it is convenient to introduce notation to indicate how close to
primal feasibility or optimality a given u is.

For feasible u, denote

δ(u) := δ+(u) :=max
h
(ωh(u)− n)/n, (3.2.1)

δ−(u) :=min
h
{(ωh(u)− n)/n : uh > 0}, (3.2.2)

and
δ̄(u) :=max{δ+(u),−δ−(u)}, (3.2.3)

so that δ(u) is the smallest ε for which u is ε-primal feasible, and δ̄(u) is the smallest ε such
that u is ε-approximately optimal. As in Theorem 2.2, we use g ∗ to denote the optimal
value of (D).

Proposition 3.2. For uK = e/m, we have δ(uK )≤ m−1, δ̄(uK )≤ m−1, and g ∗− g (uK )≤
n ln m.

Proof. We first note that u is feasible since it is positive and, by assumption, the columns
of X span IRn . Next, from (3.1.11), (1/m)eTω = uTω(u) = n, so that each component
of ω(u) is at most mn (and at least 0). This proves the bounds on δ(u) and δ̄(u), and the
bound on g (u) follows from Proposition 2.9.

The second initialization scheme is due to Kumar and Yıldırım. We will describe it for
an arbitrary set of points xi , i = 1, . . . , m, and then outline the simplification that occurs
when (as in our centered case), each xi represents both xi and −xi .

The method first finds at most 2n points using an algorithm of Betke and Henk.

ALGORITHM 3.3.
(BH Algorithm)
Step 0. Choose an arbitrary nonzero c1 ∈ IRn and set j = 1.
Step 1. Let z j and z j maximize and minimize cT

j x over the xh ’s. Set yj := z j − z j .
Step 2. If j < n, choose an arbitrary nonzero c j+1 orthogonal to y1, . . . , yj , increase j by
1, and go to Step 1. Otherwise stop.

It is easy to see that this algorithm requires O(n2m) arithmetic operations. Kumar
and Yıldırım then choose u = uKY to put equal weight on each of the distinct points of
Z := {z j , z j : j = 1, . . . , n} (note that there may be repetitions, so there are at most 2n
such points).

Now suppose that each xi represents the pair of points ±xi . Then if z j is ±xh( j ), z j
can be chosen to be ∓xh( j ) and yj = ±2xh( j ), so that ±xh( j ) will not be chosen in any
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3.2. Initialization 31

subsequent step. Thus exactly n pairs of points ±xh( j ) will be chosen, and without loss
of generality we can put weight 1/n on each xh( j ) , since in X U X T , any weight placed on
(−xi )(−xi )T can be transferred to xi xT

i .
Let us return to the general case. To analyze the quality of this initialization, we need

to consider two other polytopes:

C := {x ∈ IRn : cT
j z j ≤ cT

j x ≤ cT
j z j , j = 1, . . . , n},

C := conv(Z).
(3.2.4)

It is clear that C ⊆X⊆ C . Indeed, these two polytopes provide a guaranteed quality-of-fit
approximation to X in terms of volume, by the following result.

Proposition 3.3. We have

vol(C ) = |det(y1, . . . , yn)|, vol(C )≥ 1
n!
|det(y1, . . . , yn)|,

and hence
vol(C )≥ 1

n!
vol(X). (3.2.5)

Proof. The proof is by induction on n, the result being trivial for n = 1. So suppose it
is true for dimensions less than n, and consider a case of dimension n. Since volumes are
invariant under rotations, we may assume without loss of generality that y1 is ‖y1‖en . We
now let H be the hyperplane {x ∈ IRn : eT

n x = 0}, which is naturally identified with IRn−1,
and consider the Steiner symmetrizations of X, C , and C with respect to H .

For any convex body K ⊆ IRn , the Steiner symmetrization of K with respect to a
hyperplane H with normal v is obtained as follows. For every x ∈ H such that {x +
λv : λ ∈ IR} intersects K , let µ (respectively, ν) be the maximum (respectively, minimum)
value of λ that yields a point in K . Then replace the segment joining x +µv and x + νv
with the equal-length segment joining x + [(µ− ν)/2]v and x − [(µ− ν)/2]v, which is
symmetric with respect to H . It can be shown that, if K is a polytope, then so is its Steiner
symmetrization. Moreover, Steiner symmetrization preserves volume.

Let us now consider the result of Steiner symmetrization in our context. It is
convenient to denote by x p the projection of any point x ∈ IRn onto H , and similarly by
K p the projection of a set K ⊆ IRn onto H . Projections onto H are also clearly preserved
under Steiner symmetrization. Since the c j , j > 1, are all orthogonal to y1, the Steiner
symmetrization of C is

{x ∈ IRn : |eT
n x|≤ ‖y1‖/2, cT

j z j ≤ cT
j x ≤ cT

j z j , j = 2, . . . , n}
with volume

vol(C ) = ‖y1‖voln−1({x ∈H : cT
j z j ≤ cT

j x ≤ cT
j z j , j = 2, . . . , n}). (3.2.6)

(Here, voln−1 denotes (n− 1)-dimensional volume.)
Next, the Steiner symmetrization of C clearly contains all the points z p

j , z p
j , j =

2, . . . , n, as well as the points z p
1 ± (y1/2)en , and so it contains the two pyramids with

apices at the latter two points and bases equal to the convex hull of the former points.
Hence it has volume

vol(C )≥ ‖y1‖
n

voln−1(conv(z p
2 , z p

2 , . . . , z p
n , z p

n )). (3.2.7)
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32 Chapter 3. Algorithms for the MVEE Problem

Finally, consider the result of applying the BH Algorithm to the (n− 1)-dimensional
data {x p

2 , . . . , x p
m} in H . (Here and for the rest of the proof, final zero components of

vectors should be suppressed.) It is clear that c2, . . . , cn could be chosen exactly as before,
and that the points z p

j and z p
j , j = 2, . . . , n, would then be chosen, with corresponding

differences y p
j , j = 2, . . . , n. The induction hypothesis then gives

voln−1({x ∈H : cT
j z j ≤ cT

j x ≤ cT
j z j , j = 2, . . . , n}) = |det(y p

2 , . . . , y p
n )|

and
voln−1(conv(z p

2 , z p
2 , . . . , z p

n , z p
n ))≥

1
(n− 1)!

|det(y p
2 , . . . , y p

n )|.

Since expansion down its first column shows

|det(y1, . . . , yn)|= ‖y1‖|det(y p
2 , . . . , y p

n )|,

using (3.2.6) and (3.2.7) completes the inductive step.

Corollary 3.4. For uKY obtained as above, we have

g ∗ − g (uKY )≤ 5n ln n.

If each xi represents ±xi , the bound improves to 4n ln n.

Proof. Let ḡ denote the optimal solution to (D)when we consider only the points z j and
z j , j = 1, . . . , n, instead of all the points xi . Since there are at most 2n such points, we have
ḡ − g (uKY )≤ n ln(2n) = n ln n+ n ln2 by Proposition 3.2. By strong duality (Theorem
2.2), ḡ is also the optimal value of the corresponding primal problem, and using (1.2.1),
we find that

ḡ = 2 lnvol(E∗(C ))− n ln n− 2 lnωn .

Similarly,
g ∗ = 2 lnvol(E∗(X))− n ln n− 2 lnωn .

It now suffices to relate these two volumes. But

vol(E∗(C ))≥ vol(C )
≥ 1

n! vol(X)
≥ 1

nn n! vol(E∗(X)),

where the second inequality follows from (3.2.5) and the last from Theorem 1.1, since
(1/n)E∗(X) is contained in X. Thus g ∗− ḡ ≤ 2 ln(nn n!). A crude bound on this is 4n ln n,
but using Stirling’s formula gives a slightly lower estimate to cancel the n ln2 term in the
bound on ḡ− g (uKY ), and hence yields the first inequality of the lemma. For the second,
if each xi represents ±xi , so that uKY puts weight 1/n on just n points xi , then Example
2.4 shows that uKY is in fact optimal for the restricted problem, and so we save one n ln n
in the bound.

Although the bound in Corollary 3.4 is only better than that in Proposition 3.2 for
m > n5, in practice the Kumar–Yıldırım initialization turns out to be far more preferable.
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3.3. Global convergence and complexity 33

3.3 Global convergence and complexity
We now turn to the iteration complexity of our two algorithms. Consider first the FW
Algorithm. Suppose we are at an iterate u, with δ := δ(u) = (ωi (u)− n)/n > 0, and that
the next iterate is denoted u+. Note that, for this algorithm, the stepsize is always the
optimal stepsize λ∗. We then have

Lemma 3.5.
g (u+)− g (u)≥ κ(δ) := ln(1+ δ)− δ

1+ δ
. (3.3.1)

Proof. According to (3.1.10), we have

g (u+)− g (u) = (n− 1) ln
!
(n− 1)ωi

n(ωi − 1)

"
+ ln

%ωi

n

&
,

so that substitutingωi = n(1+ δ) yields

g (u+)− g (u) = ln(1+ δ)− (n− 1) ln
*

n(1+δ)−1
(n−1)(1+δ)

+

= ln(1+ δ)− (n− 1) ln
*
1+ δ

(n−1)(1+δ)

+

≥ ln(1+ δ)− δ
1+δ ,

where the inequality follows from ln(1+β)≤β for all β>−1.

We also require some estimates of the right-hand side κ(δ) of (3.3.1); for later purposes,
we also need to consider negative values of δ.

Lemma 3.6. We have that

(i) κ(δ) is increasing for δ> 0 and decreasing for δ< 0;

(ii) for δ≥ 1, κ(δ)≥ 1
4 ln(1+ δ); and

(iii) for |δ|≤ 1
2 , κ(δ)≥ 2

7δ
2.

Proof. We find κ′(δ) = δ/(1+δ)2, which is positive for positive δ and negative for negative
δ. This proves (i).

Now let µ(δ) := κ(δ)/ ln(1+ δ) for positive δ. Then a short computation yields

µ′(δ) =
δ− ln(1+ δ)

[(1+ δ) ln(1+ δ)]2
,

which is positive for positive δ. Thus for δ≥ 1,

κ(δ)≥ κ(1)
ln(1+ 1)

ln(1+ δ)≥ 1
4

ln(1+ δ),

establishing (ii).
Finally, let ν(δ) := κ(δ)/δ2 for nonzero δwith absolute value at most a half, ν(0) := 1/2.

It is easily seen that ν is continuous at zero, and for nonzero δ, we find

ν ′(δ) =
−2δ(1+ δ)2 ln(1+ δ)+ 2δ2+ 3δ3

δ4(1+ δ)2
.
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34 Chapter 3. Algorithms for the MVEE Problem

From the power series for ln(1+ δ), we obtain

δ ln(1+ δ)≥ δ2− δ3

2
+

δ4

3
− δ5

4
,

and substituting this into the denominator above, we get

ν ′(δ)≤ −2δ4/3+ δ5/2+ δ6+ δ7/2
δ4(1+ δ)2

< 0

for nonzero δ with absolute value at most a half. We conclude that for such δ,

κ(δ)≥ κ(1/2)
(1/2)2

δ2 ≥ 2
7
δ2.

We divide the analysis of the iteration complexity of the FW Algorithm into two steps.

Lemma 3.7. The number of iterations for the FW Algorithm to reach an iterate u with
δ(u)≤ 1 is at most

(i) 4n(ln ln m+ 3/2) if the initial iterate is uK , and

(ii) 4n(ln ln n+ 7/2) if the initial iterate is uKY .

Proof. Consider any iteration proceeding from the iterate u with δ := δ(u) ≥ 1 to the
next iterate u+, and let γ := g ∗ − g (u) and γ+ := g ∗ − g (u+) denote the corresponding
optimality gaps. From Lemmas 3.5 and 3.6 we have

γ − γ+ = g (u+)− g (u)≥ ln(1+ δ)− δ

1+ δ
≥ 1

4
ln(1+ δ)≥ 1

4n
γ , (3.3.2)

where the last inequality follows from Proposition 2.9. We conclude that

γ+ ≤
(

1− 1
4n

)
γ ≤ exp

(
− 1

4n

)
γ .

Since the initial value of γ is at most n ln m if we use uK from Proposition 3.2, we deduce
that within

4n ln
!

n ln m
2n/3

"
≤ 4n

(
ln ln m+

1
2

)

iterations, γ is at most 2n/3. Moreover, while δ is at least 1, γ decreases by at least
ln(1+ 1)− 1/(1+ 1) ≥ 1/6, so since γ remains nonnegative, at most (2n/3)/(1/6) = 4n
further iterations are possible. This establishes the first part of the lemma. The proof
is similar for the Kumar–Yıldırım initialization, using Corollary 3.4 to bound the
initial γ .

Lemma 3.8. The number of iterations for the FW Algorithm to reduce δ(u) from a value at
most δ ∈ (0,1] to δ/2 is at most 14n/δ.

Proof. Suppose we have an iterate û with δ(û)≤ δ. Then by Proposition 2.9, we have

g ∗ − g (û)≤ nδ. (3.3.3)
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3.3. Global convergence and complexity 35

By Lemma 3.5 and parts (i) and (iii) of Lemma 3.6, at every subsequent iterate u with
δ(u)≥ δ/2≤ 1/2 and following iterate u+, we have

g (u+)− g (u)≥ κ
(
δ

2

)
≥ 2

7

(
δ

2

)2
=

1
14

δ2.

Hence there can be at most (nδ)/(δ2/14) = 14n/δ such iterations.

Putting these two lemmas together, we obtain

Theorem 3.9. The total number of iterations for the FW Algorithm to reach an ε-primal
feasible u is at most

4n(ln ln m+ 3/2)+ 28n/ε (3.3.4)

with the initial iterate uK, and at most

4n(ln ln n+ 7/2)+ 28n/ε (3.3.5)

with the initial iterate uKY .

Proof. The first term in each bound above gives the number of iterations to obtain an
iterate u with δ(u) ≤ 1 in the two cases. Now let k := /log2(1/ε)0, so that 2−k ≤ ε. The
number of iterations to reduce δ(u) from at most 1 to at most 2−k can be divided into the
number to reduce it from at most 1 to at most 2−1, . . . , plus the number to reduce it from
at most 2−k+1 to at most 2−k . From Lemma 3.8, the total for this second phase is at most

14n
!

1
1
+

1
1/2
+ · · ·+ 1

2−k+1

"
< 14n 2k < 28n/ε. (3.3.6)

Let us now turn to the WA Algorithm. It is helpful to divide the iterations into four
types. An add iteration is one where a component of u increases from zero to a positive
level, while an increase iteration is one where an already positive component ui is chosen
to be increased. Analogously, a drop iteration is one where a component of u decreases
to zero, while a decrease iteration is one where a positive component uj is chosen to be
decreased, but it decreases to a positive level. Note that, in all but drop iterations, an
optimal stepsize is chosen so as to obtain a guaranteed increase in the objective function.

To analyze this increase, we use both

δ+(u) :=max
h
(ωh(u)− n)/n (= δ(u))

and
δ−(u) :=min

h
{(ωh(u)− n)/n : uh > 0}

with δ̄(u) =max(δ+(u),−δ−(u)).

Lemma 3.10. In any add, increase, or decrease iteration at an iterate u with δ̄(u) =: δ≤ 1/2,

g (u+)− g (u)≥ 2
7
δ2.
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36 Chapter 3. Algorithms for the MVEE Problem

Proof. For an add or increase iteration, δ= δ+(u) and the result follows from Lemmas 3.5
and 3.6. Consider now a decrease iteration. Then δ = −δ−(u), and the proof of Lemma
3.5 can be repeated to show that

g (u+)− g (u)≥ κ(−δ). (3.3.7)

Then part (iii) of Lemma 3.6 shows that the right-hand side is at least 2δ2/7, as
desired.

Consider the proof of Theorem 3.9. As long as δ̄(u) > 1, we have δ̄(u) = δ+(u),
and an add or increase iteration is taken. Hence the number of iterations for the WA
Algorithm to attain δ̄(u)≤ 1 is exactly the same as for the FW Algorithm. Next consider
the argument for the number of steps to reduce δ̄ from δ≤ 1 to δ/2. Using Lemma 3.10,
(3.3.7), and parts (i) and (iii) of Lemma 3.6, we find that the number of add, increase,
and decrease iterations in this phase is at most 14n/δ. Since drop iterations offer no
guaranteed increase in g , we cannot nicely bound the number of drop iterations in such
a phase. However, each drop iteration reduces to zero a component of u that was either
positive initially (numbering at most m for the Khachiyan, or 2n for the Kumar–Yıldırım
initialization), or was increased from zero in an add iteration. Hence we can bound the
number of drop iterations by the sum of m or 2n and the number of add iterations.
Putting these pieces together yields the following.

Theorem 3.11. The total number of iterations for the WA Algorithm to reach an ε-
approximately optimal u is at most

4n(ln ln m+ 3/2)+m+ 56n/ε (3.3.8)

with the initial u = uK , and at most

4n(ln ln n+ 4)+ 56n/ε (3.3.9)

with the initial u = uKY .

Example 3.12. We consider Example 2.3 yet again. Recall that

X =
, −1 −1 1 2

1 −1 −1 2

-

and each column xi represents±xi . If we use the Kumar–Yıldırım initialization, then any
choice of c1 and c2 will lead to Z = {±x1,±x4} (note that x3 =−x1). Then the initial u is
(1/2;0;0;1/2) (or (0;0;1/2;1/2)) and these are both optimal, so either the FW or the WA
Algorithm terminates immediately. (See Example 2.3.)

Suppose instead that we use the Khachiyan initialization, so that the initial iterate is
u = (1/4;1/4;1/4;1/4). Then

X U X T =
,

7/4 3/4
3/4 7/4

-

with inverse
H (u) =

,
7/10 −3/10
−3/10 7/10

-
.

We then calculate ω(u) = (2;8/10;2;32/10), so that δ(u) = δ+(u) = (32/10− 2)/2= 3/5
and δ−(u) = (8/10− 2)/2=−3/5.
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3.3. Global convergence and complexity 37

The FW Algorithm chooses u4 to increase. Then the stepsize is

λ∗ =
δ+(u)

(n− 1)(1+ δ+(u))
=

3
8

,

leading to u+ = (2/11;2/11;2/11;5/11). Subsequent iterations are somewhat tedious to
compute by hand. Suffice to say that the algorithm takes eight iterations to reduce δ(u)
to below 0.1, and the successive iterates are




5/14
1/7
1/7
5/14


 ,




5/17
2/17
2/17
8/17


 ,




2/5
1/10
1/10
2/5


 ,




8/23
2/23
2/23
11/23


 ,




11/26
1/13
1/13
11/26


 ,




11/29
2/29
2/29
14/29


 ,




7/16
1/16
1/16
7/16


 .

The corresponding expanding ellipses are shown in Figure 3.1, alternating between red
ellipses going through the points ±(1;−1) and blue ellipses going through (2;2). The
slow convergence is clear.

Let us contrast this with the results of applying the WA Algorithm. In this case we
choose to reduce u2; since λ∗ = −3/2 < −1/4 = −u2, we set λ = −u2 = −1/4 and
move to u+ = (1/3;0;1/3;1/3). Again we omit the details of the subsequent calculations,
but at this new point we choose to increase u4 and move immediately to the optimal
solution u = (1/4;0;1/4;1/2). The corresponding three ellipses are shown in Figure 3.2,
going from red to blue to green. Notice that the blue ellipse does not go through any
of the points: since it is the result of a drop iteration, an optimal stepsize could not be
taken.

The reader is encouraged to experiment with other examples using the MATLAB
code minvol.m, which is included in Appendix B and is also available at
www.siam.org/books/mo23.

5 5 5 0 0.5 1 1.5 2 2.5
5

5

5

0

0.5

1

1.5

2

2.5

Figure 3.1. Ellipses generated by the FW Algorithm.
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38 Chapter 3. Algorithms for the MVEE Problem

5 5 5 0 0.5 1 1.5 2 2.5
5

5

5

0

0.5

1

1.5

2

2.5

Figure 3.2. Ellipses generated by the WA Algorithm.

3.4 Local convergence
Although the global complexity bound for the FW Algorithm is better than that for the
WA Algorithm, the dramatic difference in their practical performance in favor of the
latter, as illustrated in the toy Example 3.12, is apparent in a wide variety of settings.
Indeed, experimentation suggests that the number of iterations, rather than growing with
ε−1, seems to depend linearly on ln(ε−1), i.e., linear convergence is exhibited. We prove
that local linear convergence holds generally in this section.

The key is to consider the following perturbed version of the MVEE problem (P ),
where the right-hand side is perturbed by the vector ν ∈ IRm :

minH∈Sn −lndet(H )
(P (ν)) xT

i H xi ≤ n+ νi , i = 1,2, . . . , m. (3.4.1)

Note that (P (0)) is our original problem (P ). Suppose we are given a δ-approximately
optimal u, and we set

νi := νi (u) :=
4

δn if ui = 0,
xT

i H (u)xi − n otherwise

for i = 1, . . . , m. Observe that each component of ν is at most δn in absolute value, and
that

uT ν =
∑

i :ui>0
ui νi =

∑
i :ui>0

ui (ωi (u)− n) = uTω(u)− neT u = n− n = 0, (3.4.2)

using (3.1.11). In contrast, if u is δ-primal feasible but not δ-approximately optimal, then
ν as defined above has some components greater than δn in absolute value; if we redefine
ν as δne , then its components are small but uT ν = δn.

What is the significance of choosing ν in this way and the key equation (3.4.2)? First,
observe that by its definition, and since u is assumed to be δ-approximately optimal, H (u)
is feasible in (P (ν)). Indeed, we have

Proposition 3.13. H (u) is an optimal solution to (P (ν(u))).

Proof. We have already observed that H (u) is feasible. Now

−H (u)−1+
∑

i
ui xi xT

i = 0
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3.4. Local convergence 39

by the definition of H (u), and if ui is positive,

xT
i H (u)xi = n+ νi (u)

by the definition of νi (u). Hence the Karush–Kuhn–Tucker conditions hold at H (u)
with multipliers u, and since (P (ν(u))) is a convex problem, we conclude that H (u) is
optimal.

Second, the sensitivity of the optimal value of a nonlinear programming problem to
its right-hand sides is given by the negative of its multipliers. Hence we should expect
the optimal value of (P ) to differ from that of (P (ν)) to first order by (−u)T (−ν) = 0.
Thus we might hope that g (u) = f (H (u)) would differ from g ∗ = f∗ by much less than
O(‖ν‖) =O(δ), and this would dramatically improve the analysis of the previous section.

In fact, the optimal value function is convex, and so if we base our analysis on (P (ν))
the inequality turns out to be going the wrong way. We therefore base it on (P (0)), which
is just (P ). So let H ∗ be an optimal solution to (P ), and let u∗ be any corresponding vector
of multipliers. Then (H ∗)−1 =X U ∗X T , and since f is convex,

g (u) = f (H (u))≥ f (H ∗)+ (−(H ∗)−1) • (H (u)−H ∗)
= f (H ∗)−∑i :u∗i >0 u∗i (x

T
i H (u)xi − xT

i H ∗xi )
≥ g ∗ −∑i :u∗i >0 u∗i (n+ νi − n)

= g ∗ − (u∗)T ν
= g ∗+(u − u∗)T ν
≥ g ∗ − ‖u − u∗‖‖ν‖,

(3.4.3)

where we have used (3.4.2) and the fact that xT
i H ∗xi = n whenever u∗i is positive. (Ob-

serve that these inequalities provide another proof of the weaker bound in Proposition
2.9. Indeed, g (u) ≥ g ∗ −∑i :u∗i >0 u∗i (x

T
i H (u)xi − n) holds for any feasible u, and if u is

ε-primal feasible, then this is at least g ∗ −∑i :u∗i >0 u∗i nε = g ∗ − nε.) We want to show
that g (u) is within O(δ2) of g ∗, and the inequality above offers strong evidence that this
is true. Indeed, as we have seen, the perturbation ν is of order δ; so we only need to show
that the corresponding change in the multipliers is also of order δ.

For this task we use a result of Robinson (Corollary 4.3 of [64]), which we state for
our context as follows. We view the set of positive definite symmetric matrices Sn

++ as an
open subset of the set Sn of symmetric n× n matrices, and consider

minH∈Sn f̂ (H , ν) :=−lndet(H )
(P̂ (ν)) ĝi (H , ν) := xT

i H xi − n− νi ≤ 0, i = 1, . . . , m,
(3.4.4)

with f̂ and ĝ mapping Sn
++ × IRm into IR and IRm , respectively. Note that H ∗ is an

optimal solution for (P̂ (0)). Then f̂ and ĝ are smooth, the constraints are regular (since
they are convex and there is a Slater point, i.e., a feasible H satisfying the constraints
strictly) at ν = 0, and the constraint right-hand side, the nonpositive orthant in IRm , is
polyhedral. Moreover, since the constraints are linear and the second derivative of the
objective function at any feasible point is a positive definite operator, Robinson’s second-
order sufficient condition holds. Then Robinson’s result yields the following.

Theorem 3.14. There is a neighborhood N of the origin in IRm and a positive constant L such
that, for any ν ∈N and optimal solution H to (P̂ (ν)) with corresponding multipliers u, there
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40 Chapter 3. Algorithms for the MVEE Problem

is a multiplier vector u∗ for (P̂ (0)) with

‖u − u∗‖ ≤ L‖ν‖.

Now, if δ is sufficiently small, ν(u)will lie in this neighborhood N , and so combining
this result with (3.4.3), we obtain the following.

Proposition 3.15. There is a constant M such that, for every sufficiently small positive δ, any
δ-approximately optimal u satisfies

g ∗ − g (u)≤Mδ2. (3.4.5)

We now repeat our analysis of the complexity of the WA Algorithm, but using (3.4.5)
in place of (3.3.3). It will take a certain (data-dependent) constant P number of iterations
to reduce δ̄(u) to a level below 1 and below the level for which the proposition above
applies. From then on, to reduce δ̄(u) from δ to δ/2 will require at most

Mδ2

δ2/14
= 14M

iterations (see the proof of Lemma 3.8). There are a logarithmic number of such phases
to reduce δ̄(u) from at most 1 to ε, but now we have a sum of constant terms instead of
the sum of an increasing geometric series (see (3.3.6) in the proof of Theorem 3.9). Thus
adding all these iterations gives a total of 28M log2(ε−1), and we obtain

Theorem 3.16. There are data-dependent constants P and Q such that the number of
iterations of the WA Algorithm required to obtain an ε-approximately optimal u is at most

P +Q log2(ε
−1).

Besides showing local linear convergence, our analysis has shown that an ε-approxim-
ately optimal solution may be much closer to optimality in (D) than an ε-primal feasible
solution: compare (3.4.5) to (3.3.3). Unfortunately, we don’t know when we are very
close to optimality, because the only way to certify this is by using duality, and the
corresponding primal solution has an objective value n ln(1+ ε) higher.

3.5 Polarity and a striking relationship to the ellipsoid
algorithm

In the previous two chapters we noted that every iteration of the ellipsoid algorithm
requires us to obtain the minimum-volume ellipsoid containing part of a given ellipsoid,
and hence involves a subproblem similar to (P ). Now we investigate the relationship
between the algorithms we have developed for (P ) and the ellipsoid method and show the
remarkable fact that the FW and WA Algorithms can be viewed as applying the deepest
(or more accurately, least shallow) symmetric two-sided cut ellipsoid algorithm to the
polar of X := conv{±x1, . . . ,±xm}.

Given a closed convex set C in IRn containing the origin, its polar is defined to be

C ◦ := {z ∈ IRn : xT z ≤ 1 for all x ∈C }. (3.5.1)
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3.5. Polarity and a striking relationship to the ellipsoid algorithm 41

It is easy to see that C ◦ is also a closed convex set containing the origin; moreover, an easy
application of the separating hyperplane theorem shows that polarity is an involution:
(C ◦)◦ =C . For the set X above, clearly

Z :=X◦ = {z ∈ IRn : |xT
i z|≤ 1, i = 1, . . . , m}.

Moreover, an application of (1.1.6) shows that, if F is the ellipsoid

F := {x ∈ IRn : xT H x ≤ 1}
for a positive definite matrix H , then its polar is the ellipsoid

F◦ = {z ∈ IRn : zT H−1 z ≤ 1}.
(When we deal with polarity, it is easier to use right-hand sides of 1 rather than n.) Finally,
the definition immediately implies that

C ⊆ D⇒D◦ ⊆C ◦.

Now suppose that we are applying the FW Algorithm to (D). At a particular iteration,
we have a feasible u, and as noted at the end of Section 2.4, we have

F := {x ∈ IRn : xT H x ≤ 1}⊆X

for H :=H (u) = (X U X T )−1. By the inclusion-reversing property of polarity,

Z⊆F◦ =: E = {z ∈ IRn : zT H−1 z ≤ 1}.
If the FW Algorithm does not terminate, it chooses a point xi with ωi := xT

i H xi ≥
(1+ ε)n, and of course −xi also satisfies this relation. The corresponding inequalities
defining Z can be written as

−β(xT
i H xi )

1/2 ≤ xT
i z ≤β(xT

i H xi )
1/2 (3.5.2)

with
β=ω−1/2

i ≤ [(1+ ε)n]−1/2.

The set of points in E satisfying these inequalities is exactly Eαβ of (1.4.1) with a :=
ω−1/2

i xi and α :=−β.
We described the ellipsoid method in Section 1.4 as seeking a point satisfying a system

of inequalities, but it can also be used to find a point “deep” inside a polyhedron. In
this case, we might continue the algorithm even when a feasible point is obtained, by
using inequalities that are “too close” to the current center. Of course, for a centrally
symmetric polyhedron like Z, clearly the origin is the deepest point, but we may still
want an ellipsoid that fits the polyhedron well in the sense that no inequality is too close
to the center, relative to its distance to the boundary of the ellipsoid. In our case, the
inequalities (3.5.2) are too close to the center, because of the bound on β, and a smaller
volume ellipsoid,

E+ := {z ∈ IRn : zT H−1
+ z ≤ 1},

can be found; indeed, according to the formulae in [80], the minimum-volume ellipsoid
containing Eαβ has

H+ = δ

#
H −σ (H xi )(H xi )T

xT
i H xi

$
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42 Chapter 3. Algorithms for the MVEE Problem

with

δ :=
n(1−β2)

n− 1
, σ :=

1− nβ2

1−β2
.

Then the rank-one update formula in Corollary A.10 gives

H−1
+ = δ−1

%
H−1+ σ

(1−σ)xT
i H xi

xi xT
i

&

= δ−1
*
H−1+ σβ2

1−σ xi xT
i

+

= δ−1(1+µ)
6*

1− µ
1+µ

+
H−1+ µ

1+µ xi xT
i

7
,

(3.5.3)

where

µ :=
σβ2

1−σ .

Now, substituting in the value for σ , we find µ= (1−nβ2)/(n−1), and sinceωi =β−2,

µ=
ωi − n
(n− 1)ωi

= λ∗,

which is the optimal stepsize in the FW Algorithm. Moreover, substituting in the value
for δ we find δ−1(1+µ) = 1, so that (3.5.3) gives

H−1
+ = (1+λ

∗)−1(H−1+λ∗xi xT
i ) =X U+X T

with u+ = (1 + λ∗)−1(u + λ∗ei ). It follows that the updated ellipsoid in the deepest
symmetric cut ellipsoid method is exactly the polar of the updated inscribed ellipsoid
in the FW Algorithm! This establishes the desired correspondence. If the FW Algorithm
terminates when u is ε-primal feasible, the corresponding ellipsoid algorithm terminates
when all the inequalities defining Y have correspondingβ values greater than [(1+ε)n]1/2.

The correspondence with the WA Algorithm is not so clear cut. A negative λ∗
corresponds to aωi that is less than n. In the polar space, this yields a pair of hyperplanes
that are far from the center. If the weight on these is positive, an improvement in the
volume can be made by decreasing this weight. This is not a feature of the usual ellipsoid
algorithm, although variants do consider such steps.

Given that “everyone knows” that the ellipsoid algorithm is very inefficient, this
relationship would seem to imply that our coordinate-ascent methods would be equally
inefficient. However, while the usual one-sided cut ellipsoid method is indeed slow,
typically leading to a reduction in volume by a factor of the order of 1− 1/n, the same is
not true of its two-sided variant. Indeed, the factor of volume reduction is equal to that
of (det H )1/2, and Lemma 3.5 implies that this is a constant less than 1 while ε is bounded
away from zero. This also follows from the formulae in [80].

3.6 Small core sets and eliminating points
Recall that a core set of X is a subset of {x1, . . . , xm} such that the minimum-volume
ellipsoid containing this subset is also the minimum-volume ellipsoid containing X. We
showed just before Example 2.3 that (for centered ellipsoids) a core set of cardinality at
most n(n+ 1)/2 exists.

Suppose that u is ε-primal feasible. Then g (u) provides a lower bound on−lndet(H ∗)
and E([1+ε]−1H (u)) contains X. Then if S := {xi : ui > 0}, g (u) is also similarly related
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3.6. Small core sets and eliminating points 43

to the minimum-volume ellipsoid containing S. The volume of the latter is thus within a
factor (1+ ε)n of the minimum-volume ellipsoid containing X. We call S an ε-core set.

Now consider the FW or the WA Algorithm, starting with u = uKY . The initial
u has at most 2n positive components, and every iteration (respectively, every add,
increase, or decrease iteration) increases the number of positive components by at most
1. Hence, when the algorithm terminates with an ε-primal feasible u (respectively, an ε-
approximately optimal u), this has at most 4n(ln ln n+ 4)+ 28n/ε positive components.

Proposition 3.17. When initialized with u = uKY , both the FW and the WA Algorithms
generate an ε-core set of cardinality at most 4n(ln ln n+ 4)+ 28n/ε.

Although the bound is the same for both algorithms, note that the WA Algorithm has
the potential for producing much smaller core sets, since each drop iteration decreases the
number of positive components of u.

Next we turn to trying to decrease the complexity of each iteration. Recall that this
is dominated by the work to updateω, which requires O(mn) floating-point operations.
This is large because m can be much larger than n. However, we know from the discussion
above that a much smaller set of xi ’s is important for the algorithm. We would therefore
like to eliminate certain xi ’s from consideration during the algorithms, when we are sure
that they are not relevant. Of course, if a drop iteration makes ui zero, or ui is very small,
we may suspect that xi can be eliminated; however, we would like a guaranteed test, since
if we eliminate a point xi and later want to check that xT

i H xi ≤ n, we need to do O(n2)
work, whereas just updatingωi requires only O(n) work at each iteration. We will call a
point xi inessential if it lies in the interior of the minimum-volume ellipsoid, and essential
otherwise. Clearly inessential points can be eliminated.

Suppose we have a feasible u with H := H (u). Also, let H ∗ and u∗ denote optimal
solutions to (P ) and (D), respectively. Then any xi with xT

i H ∗xi < n can be eliminated;
unfortunately, we don’t know H ∗. However, if δ := δ(u) is small, we may suspect that H ∗
is close to H , and thus perhaps we can eliminate points withωi (u) = xT

i H xi sufficiently
less than n.

To measure the distance between these two matrices, we define

M := H 1/2(H ∗)−1H 1/2,

which we hope is close to the identity. Indeed, let its eigenvalues be λ1 ≤ λ2 ≤ · · · ≤ λn .
Then we have

∑
j
λ j = Trace(M ) =H •

#∑
i

u∗i xi xT
i

$
=
∑

i
u∗i xT

i H xi ≤ (1+ δ)n. (3.6.1)

Similarly,

∑
j
λ−1

j = Trace(M−1) =H ∗ •
#∑

i
ui xi xT

i

$
=
∑

i
ui xT

i H ∗xi ≤ n. (3.6.2)

These two inequalities imply that the eigenvalues must all be close to 1 if δ is small, and
hence H and H ∗ must be close.

To see how we will use this, suppose xi is essential, so that xT
i H ∗xi = n. Now let

z :=M−1/2H 1/2xi , which implies zT z = xT
i H ∗xi = n. Also,

ωi (u) = xT
i H xi = zT M z ≥ λ1zT z = λ1n. (3.6.3)
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44 Chapter 3. Algorithms for the MVEE Problem

Thus we will be able to eliminate any xh withωh(u)< λ1n. Hence we would like a lower
bound on λ1. Consider the optimization problem

min{λ1 : λ> 0, λ satisfies (3.6.1) and (3.6.2)}.
It is clear that the feasible region of this problem is compact, since each λ j must lie
between 1/n and (1+ δ)n, so that the problem has an optimal solution. Moreover, any
optimal solution must satisfy both constraints at equality. If the second constraint is
satisfied strictly, we may decrease λ1 slightly and obtain a better feasible solution. If the
first constraint is satisfied strictly, we may increase λ2 slightly while keeping the solution
feasible, and then the second constraint is satisfied strictly and we may proceed as above.
Moreover, we must have λ2 = · · · = λn ; otherwise replacing these components by their
arithmetic mean keeps the first constraint satisfied and makes the second constraint strict.
So the optimal solution is of the form (λ;µ; · · · ;µ), where

λ+(n− 1)µ= (1+ δ)n,
1
λ
+

n− 1
µ
= n.

Solving the first equation for µ in terms of λ and substituting the result in the second
equation yields a quadratic equation with roots

λ= 1+
δn
2
±
√√√

δn− δ+
δ2n2

4
,

and since we want λ≤µ, the negative sign is the appropriate one. Combining this result
with our earlier discussion, we obtain the following.

Proposition 3.18. Given a feasible solution u with δ := δ(u), any point xi with

ωi (u)< n


1+

δn
2
−
√√√

δn− δ+
δ2n2

4




is inessential.

3.7 A connection to spectral sparsification of graphs
In this section we show how the FW and WA Algorithms “almost” provide a constructive
approach to the problem of spectral sparsification of graphs. This highlights the need to
improve our knowledge of the convergence properties of these algorithms.

Suppose we are given a weighted graph G = (V , E , w) with w : E → IR++. Without
loss of generality we assume V = {1,2, . . . , n}. The graph Laplacian is the symmetric
matrix L(G) of order n with i j entry −wi j if i j ∈ E , 0 for i 4= j otherwise, and i i entry
∑

j :i j∈E wi j . We seek a (weighted) subgraph Ĝ = (V , Ê , ŵ) with ŵ : Ê → IR++, with |Ê |
“small,” such that

(1− δ)L(G)5 L(Ĝ)5 (1+ δ)L(G)

for some 0< δ< 1. We call this a spectral sparsification of the graph G. This notion was
introduced by Spielman and Teng [76], who described its applications. Since

zT L(G)z =
∑
i j∈E

wi j (zi − zj )
2,
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3.7. A connection to spectral sparsification of graphs 45

such a subgraph guarantees that all cuts ŵ(S, S̄) in Ĝ are close to the corresponding cuts
w(S, S̄) in G, by choosing z to be the indicator vector of S ⊆ V . (A cut ŵ(S, S̄), where
S̄ =V \ S, is defined to be the sum of all ŵi j for i ∈ S, j ∈ S̄ .) A subgraph approximately
preserving the size of cuts in this way was earlier considered by Benczur and Karger [12].

Without loss of generality, G is connected (else just consider separately its connected
components), in which case L(G) is positive semidefinite with rank n − 1, its nullspace
being the space spanned by the vector e of 1’s. To reduce to the positive definite case,
we can either project the Laplacians to the space orthogonal to e , or replace L(G) by
L(G) +λe eT for λ > 0; we can choose λ := Tr(L(G))/(n(n− 1)) to make its eigenvalues
of comparable size. Note that the matrix inequalities above hold if

(1− δ)(L(G)+λe eT )5 L(Ĝ)+ λ̂e eT 5 (1+ δ)(L(G)+λe eT )

for some positive λ and λ̂.
Following Batson, Spielman, and Srivastava [11], we now reduce this to a linear

algebra problem. Note that

L(G) =
∑
i j∈E

wi j (ei − e j )(ei − e j )
T

with ei the ith unit vector. Hence

L(G)+λe eT = Y W Y T ,

where Y is a matrix with columns e and ei − e j , i j ∈ E , and W is a diagonal matrix with
diagonal entries λ and the wi j ’s. Since L(G) + λe eT is positive definite, it can be written
as J J T with J a nonsingular n× n matrix, so that

I = (J−1Y )W (J−1Y )T .

We now scale the columns of J−1Y to get X , with all the columns of X having norm
6

n.
If we correspondingly scale the diagonal entries of W , we get

I =X Ū X T ,

where we let ū := diag(Ū ). It can now be seen that our goal will be achieved if we find a
nonnegative u with a “small” number of positive components so that

(1− δ)I 5X U X T 5 (1+ δ)I

with U = Diag (u). The nonzero entries of u pick out the edges of Ê , and rescaling these
entries gives the weights ŵ. We next relate this problem to the MVEE problem and its
dual.

In order to find a suitable u, we restrict the arithmetic mean of the eigenvalues of
X U X T to 1 and then maximize their geometric mean. Note that for u = ū, the geometric
mean is also 1 and hence maximum. Observe that the arithmetic mean is 1 iff the trace is
n, which holds iff

∑
i

ui = Tr(U X T X )/n =Tr(X U X T )/n = 1,

since the diagonal entries of X T X are all n by our scaling. Also, maximizing the geometric
mean amounts to maximizing the determinant, the product of the eigenvalues, or its
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46 Chapter 3. Algorithms for the MVEE Problem

logarithm. Hence the optimization problem becomes exactly the dual (D) of the MVEE
problem!

Just as we know an optimal solution ū of (D), we know one of (P ): indeed, H = I
is feasible by our scaling, and since it leads to no duality gap with u = ū, it is optimal.
However, we are not after an optimal solution of (D): we want a near-optimal u with
a small number of positive components. But this is exactly what our coordinate-ascent
algorithms achieve, as we saw in the previous section.

By Theorems 3.9 and 3.11, we then take at most

O(n(ln ln n+ ε−1))

iterations to obtain an ε-approximately optimal solution, and then u has the same order
of positive components.

What value of ε is necessary to achieve our goal? This is where the argument
unfortunately falls apart. The worst case for a matrix “near the identity” is to have one
eigenvalue of 1−δ and n−1 of 1+δ/(n−1), which has an objective value of about −δ2/2
(or a similar objective from the opposite sign configuration). So we need to set ε to about
δ2/(2n), and this extra n factor means we need O(n2) iterations, and hence we obtain a
dense graph!

Batson, Spielman, and Srivastava [11] give an algorithm that yields a subgraph with
at most O(n/δ2) edges. This method is also based on rank-one updates, but each iteration
requires an order of magnitude more work than our method. One should always learn
from one’s failures: how could we obtain a comparable result from our approach? If
we could obtain a global linear convergence rate, with a complexity of the order of
O(n ln ln n + n ln(1/ε)) iterations, we would be able to improve this result in terms of
the dependence on δ while worsening it in its dependence on n. There may also be room
for improvement in our analysis of the accuracy required. We want all eigenvalues of
X U X T to be within δ of 1. Our algorithm ensures that all quantities xT

i (X U X T )−1xi
are at most (1+ ε)n. However, to relate these two, we seem to need to go through the
intermediate step of bounding the lack of optimality in the log determinant objective
function, and for this our tolerance needs to be very tight. While our approach fails, it
still seems constructive to show the power of an optimization algorithm to potentially
establish a theoretical result, even when it is applied to a problem with a known optimal
solution.

3.8 Computational results
Our previous examples have been toy problems in two or three dimensions. Here we
provide an indication of the power of the algorithms discussed in this chapter to solve
large-scale instances.

Extensive computational testing has been carried out by Sun and Freund [77] on
minimum-volume ellipsoid problems using various interior-point-type methods applied
to (P ) as well as the FW Algorithm. However, the latter was implemented without
exploiting rank-one updates. They found that the fastest method was the dual reduced
Newton (DRN) method, applied together with an active-set strategy for large m.

Sun and Freund generate test sets by combining clusters of points, where each cluster
consists of independent points from a Gaussian distribution (each cluster has a different
mean and covariance matrix). The problem sizes they consider range up to 30,000 points
in dimension 30.
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3.8. Computational results 47

Ahipaşaoğlu, Sun, and Todd [3] implemented the FW and WA Algorithms and
compared them to the DRN method on the same data sets. While the FW Algorithm was
exceedingly slow, it was able to obtain moderately accurate solutions (ε-primal feasible
solutions with ε of the order 10−2 or 10−3). The WA Algorithm achieved much more
accurate solutions, ε-approximately optimal with ε = 10−7 or even 10−10. It was much
faster than the DRN method without an active set strategy, but somewhat slower than the
latter with an active set strategy. These comparisons were on moderately sized problems,
up to 1,800 points in dimension 30. For larger problems, the DRN active method was
considerably superior, by a factor of almost 7 for 30,000 points in dimension 30. The
Kumar–Yıldırım initialization was important for these results. However, no elimination
of points was used in these tests. Moreover, it was demonstrated that the DRN active
method could not be applied to truly large-scale problems (of the order of 500,000 points
in dimension 500) because of memory problems, while the WA Algorithm had no such
difficulty.

In her doctoral thesis, Ahipaşaoğlu [2] used the strategy of Section 3.6 to eliminate
points. A considerable speedup ensued. For ten random problems involving 30,000 points
in dimension 50, a speedup of over 4 was observed, while with 500,000 points, the speedup
was over 7.

Here we will just give results for one randomly generated problem using the variants
of coordinate-ascent algorithms discussed in this chapter. It is not easy to generate
appropriate test sets. One way of doing so is to take the union of various clusters, as
above, which seems reasonable from an applications point of view. If the points are
taken from a single distribution, difficulties arise. For example, if all coordinates are
generated independently from a standard Gaussian distribution, then the law of large
numbers implies that all points will lie very close to a spherical surface—clearly not a
typical situation. The same holds if all coordinates are generated independently from
any distribution with finite variance. If the points are generated from a general Gaussian
distribution, they will similarly all lie close to the surface of an ellipsoid, also a very special
situation. Instead, we generate them as follows. First, we use the Cauchy distribution
which has heavy tails. (A centered Cauchy random variable can be generated as a/b ,
where a and b are independent standard Gaussian random variables.) If we just generated
an n×m matrix of independent Cauchy random variables, each point would likely have a
dominant component due to the heavy tails, and so there would be only 2n “interesting”
points, each near a coordinate axis. Instead we generate m independent Cauchy random
variables and an n × m matrix A of independent standard Gaussian random variables,
and then set each point xi to be the normalized ith column of A times the ith Cauchy
sample. These points satisfy rotational symmetry, and their distances from the origin are
Cauchy. (An implementation of this method in MATLAB is included in Appendix B as
rot_cauchy.m.)

We generated 5,000 points in dimension 200 as the columns of a matrix X generated as
above. Our basic method is the WA Algorithm with Kumar–Yıldırım initialization and
with elimination of points (every max{n, 100} iterations) as in Section 3.6. To obtain an ε-
approximately optimal solution with ε= 10−7 required 1,514 iterations and 1.2 seconds.
(All runs were made on a MacBook Air with a 1.7 GHz Intel Core i7 with MATLAB
2014a.) Of these iterations, none were drop, 746 were decrease, 106 were add, and 662
were increase iterations. At the initial iteration, 859 of the 5,000 points were eliminated,
and after 200 iterations, a further 2,752 were eliminated. The final solution had just 306
positive components of u.

Figures 3.3 and 3.4 show the progress of maxωi and min{ω j : uj > 0} after the first
25 iterations, and the linear convergence of the error ε :=max(max(ωi−n)/n,max{(n−
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48 Chapter 3. Algorithms for the MVEE Problem

0 200 400 600 800 1000 1200 1400 1600
100

200

300

400

500

600

700

Figure 3.3. Convergence of maxωi (blue) and min{ω j : uj > 0} (red).
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Figure 3.4. Linear convergence of the error.

ω j )/n : uj > 0}), plotted on a log scale. Note that the linear convergence takes hold
almost from the first iteration, and that reasonably accurate solutions are available even
after just 500 iterations.

Now let us make some variations on the algorithm and note the effects. First, if we ask
for ε= 10−10, we need only 2,196 iterations and 1.4 seconds, a modest increase in effort.
If we use the Khachiyan initialization, we need 6,451 iterations (4,694 drop, 652 decrease,
no add, and 1,105 increase) and 5.8 seconds; no elimination of points takes place until
iteration 5400, when 4,370 points are eliminated. If we disable the elimination of points
in the basic algorithm, we need the same 1,514 iterations, but now the time required is 2.2
seconds, twice as much.

Lastly, we applied the FW Algorithm (no away steps) with the Khachiyan initializa-
tion. For this, we decreased the accuracy required. To obtain an ε-primal feasible solution
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3.9. Notes and references 49

with ε= 10−2 required 19,494 iterations and 23.7 seconds. For ε= 10−3, these increased
to 188,738 iterations and 229.2 seconds. Note the ten-fold increase for a ten-fold decrease
in ε, corresponding to the complexity bound in Theorem 3.9, whereas the WA Algorithm
needed only about a 20% increase to improve by three orders of magnitude, due to the
linear convergence.

If we used the Kumar–Yıldırım initialization with the FW Algorithm, there was a
noticeable improvement. For ε = 10−2 the method needed 2,353 iterations and 1.5
seconds, while ε= 10−3 required 35,153 iterations and 13.9 seconds. (However, for these
accuracies, the WA Algorithm only needed 0.6 and 0.8 seconds, respectively.)

Let us stress again that, in this example, linear convergence of the WA Algorithm
seems to occur from the very first iteration, as opposed to asymptotically. Indeed, we
have observed this behavior over many examples. It would be very desirable to prove this
rigorously, or more precisely prove a global convergence estimate of O(p(m, n) ln(1/ε))
steps to obtain an ε-approximately optimal solution for some polynomial p.

3.9 Notes and references
The FW Algorithm was proposed to solve the D-optimal design problem of statistics by
Fedorov [27]with optimal stepsize as described here. Wynn [85] independently proposed
a variant: if the initial u was chosen as ui = 1/$, i ∈ S, ui = 0 otherwise, for some subset
S of {1, . . . , m} of cardinality $, then the stepsize at the pth iteration was chosen to be
($+ p)−1, p = 1, . . . , so that the resulting u was rational with all denominators equal
to $+ p; it then corresponded to a design with this number of design points. However,
convergence was slow because of the deterministic stepsize. (As so often happened in this
era, when an idea was ripe for discovery, it arose independently and simultaneously, in
this case around 1970, on both sides of the Iron Curtain.)

Frank and Wolfe [30] proposed their method for quadratic programming problems
in 1958, but also proposed an extension to arbitrary smooth convex linearly constrained
problems. Both algorithms are now known as the Frank–Wolfe method; other names
include the conditional gradient method. The idea of linearizing the objective function
and solving the corresponding linear programming subproblem is natural, but since the
resulting solution always lies at an extreme point, whereas the original problem may
not share this property, convergence can be slow. Wolfe recognized this drawback and
suggested the remedy of away steps in his 1970 paper [84], which also contained an analysis
of the resulting convergence. Atwood [9] independently obtained the same method in
the context of the D-optimal design problem three years later. Böhning [15] suggested
an algorithm where at each iteration two components of u are chosen and a quantity
is subtracted from one and added to the other. No rescaling is needed, but a rank-two
update is required and it is not clear this is superior to an add/increase followed by a
drop/decrease iteration, which is the same work. Barnes [10] proposed a coordinate-
ascent method to solve the dual of the minimum-volume fixed-center ellipsoid problem
as part of an approach to solving the general problem, motivated by Rosen’s pattern
recognition problem [66]. His nested approach did not recognize that the general case
can be reduced to the centered one.

Khachiyan’s initialization appears in his analysis [49] of the complexity of the FW
Algorithm. Kumar and Yıldırım [56] developed their initialization in the context of
searching for small core sets, but still using the FW Algorithm. Proposition 3.3 was
proved by Betke and Henk [13] in connection with approximating the volume of convex
bodies. The global complexity bound for the FW Algorithm is due to Khachiyan for
his initialization and to Kumar and Yıldırım for theirs, while Todd and Yıldırım [81]
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50 Chapter 3. Algorithms for the MVEE Problem

extended the analysis for the WA Algorithm. (Our analysis above of the number of
iterations to decrease δ below 1 gives a slight improvement over the bounds in the latter
two papers, replacing ln n (or ln m) with ln ln n (or ln ln m).) Local linear convergence for
the WA Algorithm was established by Ahipaşaoğlu, Sun, and Todd [3], using the theory
of perturbed nonlinear programming problems developed by Robinson [64]. Note that
local linear convergence for the Frank–Wolfe method with Wolfe’s away steps was already
discussed in Wolfe [84] and then established in general by Guélat and Marcotte [38].
However, they assumed that the objective function, g in our notation, was continuously
differentiable on the entire feasible region and strictly concave; neither of these conditions
holds in our problem.

The relationship between these methods and the ellipsoid method was obtained by
Todd and Yıldırım [81]. The formulae for the minimum-volume ellipsoid containing the
intersection of an ellipsoid with a slab can be found in Todd [80], whereas the idea that
the quadratic inequality defining each successive ellipsoid could be obtained by taking
a linear combination of that defining the previous ellipsoid and that defining the slab
was developed in Burrell and Todd [18]. That paper also describes situations in which
steps like drop iterations could be useful, and while decrease or drop iterations were not
explicitly suggested, I used them at that time in computational testing, in particular to
remove the effects of initial very large bounds in the initial ellipsoid.

The bounds on the size of the ε-core sets generated by the FW and the WA Algorithms
are due to Kumar and Yıldırım and Todd and Yıldırım, respectively (again, our analysis
here gives a slight improvement). The test for eliminating points based on theirω-values
is due to Harman and Pronzato [41].

There has been much recent interest in the Frank–Wolfe method and its variants due
in part to their suitability for large-scale problems arising in statistical learning. See, for
instance, Freund and Grigas [31], Jaggi [44], Lacoste-Julien and Jaggi [57], and Peña and
Rodriguez [61].

D
ow

nl
oa

de
d 

07
/1

5/
16

 to
 1

32
.2

39
.1

.2
31

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



Chapter 4

Minimum-Area
Ellipsoidal Cylinders

We now turn to a generalization of the MVEE problem, where we seek an ellipsoidal
cylinder containing a given set of points in IRn , whose intersection with the coordinate
subspace corresponding to the first k components (k ≤ n) has minimal area. (We call
this k-dimensional measure area instead of volume to stress that it is lower-dimensional.)
This is the minimum-area enclosing cylinder (MAEC) problem. Once again, there is a
motivation in terms of an optimal design problem in statistics. In addition, the problem
seems to have intrinsic interest. Finally, if we are trying to foresee possible collisions
between objects moving in space, solving the MAEC problem for a collection of points
in five-dimensional space can provide a guarantee of no collisions.

An illustration of the problem for the case n = 3, k = 2 is shown in Figure 4.1.
We formulate the problem in two ways in the next section. Section 4.2 derives the

dual problem and shows weak and strong duality results. Optimality conditions are given
in Section 4.3. In Section 4.4 we discuss Dk -optimal design, while Section 4.5 treats the
collision problem.

4.1 Formulations of the MAEC problem
In Chapter 2 we assumed that the m points xi which we wish to enclose spanned IRn ,
and that this was without loss of generality, since otherwise arbitrarily small ellipsoids
circumscribed X. This is not the case for ellipsoidal cylinders and cross-sectional areas,
but the subspace S spanned by the xi ’s must contain the subspace IRk × {0}; otherwise,
ellipsoidal cylinders of arbitrarily small cross-sectional area can be found containing all
the points by modifying the minimum-volume ellipsoid in S that contains all the points.

Now let us consider the case where S is a proper subspace of IRn . Then we can take
a basis of S whose first k members are the first k coordinate vectors, with the remaining
basis vectors chosen arbitrarily. We can then represent the points xi in this basis, and we
will obtain a new equivalent instance of the problem with a smaller n. Moreover, in this
reformulation, the points span the full space. Following this discussion, we can assume
again, without loss of generality, that

X has full row rank. (4.1.1)

Here X as before is the n ×m matrix whose columns are the points xi . However, it
is convenient to partition this matrix into its first k rows, forming the matrix Y ∈ IRk×m ,
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52 Chapter 4. Minimum-Area Ellipsoidal Cylinders

Figure 4.1. Minimum-area ellipsoidal cylinder. Reprinted with permission from Elsevier [4].

and the remaining rows, forming Z ∈ IR!×m , where ! := n − k. Similarly, each xi is
partitioned into (yi ; zi ), and any x ∈ IRn is partitioned into (y; z).

Let E ∈ IRk×! be given, and consider the columns of

Ê :=
! −E

I

"

as the “axes” of a cylinder with its base lying in the subspace IRk × {0}. Any point (y; z)
can be obtained from the base point (y + E z; 0) by adding a linear combination of the
columns of Ê . If we restrict the base point to an ellipsoid in IRk × {0}, we obtain an
ellipsoidal cylinder. We call E the “axis matrix.”

Definition 4.1. Let E be a matrix in IRk×! and H ′ ∈ IRk×k be positive definite. Then the set

C(E , H ′) := {(y; z) ∈ IRn : (y + E z)T H ′(y + E z)≤ k}
is called the ellipsoidal cylinder defined by the axis matrix E and the shape matrix H ′.

Note that if k = n and thus E is an empty matrix, we obtain the ellipsoid E(H ′).
More properly, we might have called C(E , H ′) a centered ellipsoidal cylinder, but the

restriction to the centered case is much more straightforward here than in the case of
ellipsoids. Indeed, suppose we define a noncentered ellipsoidal cylinder as above, but
with a new parameter ȳ ∈ IRk , its center, and y+E z in the definition replaced by y+E z−
ȳ. Then it is easy to see that the minimum-area noncentered ellipsoidal cylinder in IRn

containing the xi ’s can be trivially obtained from the minimum-area centered ellipsoidal
cylinder in IRn+1 containing the points (xi ; 1) with the same value of k. The negative of
the last column of the axis matrix E ∈ IRk×(n+1−k) gives the center of the general ellipsoidal
cylinder in IRn . We henceforth only consider centered ellipsoidal cylinders.

As a special case of this reduction, we can solve a noncentered minimum-volume
ellipsoid problem in IRn as a minimum-area centered ellipsoidal cylinder problem in
IRn+1. However, ellipsoidal cylinder problems are harder to solve than comparably
sized ellipsoid problems; so the more complicated reduction in Chapter 2 is preferable
computationally.
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4.1. Formulations of the MAEC problem 53

With this definition of a (centered) ellipsoidal cylinder, we can formulate the MAEC
problem as

minE∈Rk×!,H ′∈Sk f̄ (E , H ′) :=−lndet(H ′)
(P ′) (yi + E zi )T H ′(yi + E zi ) ≤ k , i = 1, . . . , m.

(4.1.2)

Unfortunately, this problem is nonconvex in its variables E and H ′, due to the cross-terms
2yT

i H ′E zi and zT
i ET H ′E zi in the constraints. We will see in the “Notes and references”

section that the above problem reduces to a linear programming problem if k = 1. We
therefore assume whenever it is useful that 1 < k < n, although we sometimes illustrate
ideas with simple examples where k = 1.

However, a simple reformulation restores convexity. We encode both E and H ′ in a
positive semidefinite matrix H ∈ Sn . This matrix is partitioned into its first k rows and
columns and its last ! rows and columns:

H =:
#

HY Y HY Z
H T

Y Z HZZ

$
.

Our second formulation is then

minH∈Sn f (H ) :=−lndet(HY Y )
(P ) xT

i H xi ≤ k , i = 1, . . . , m,
H & 0.

(4.1.3)

Note that we are using f for the objective function again, but it differs from that
in the previous two chapters. Also, a finite objective function implies that HY Y is
positive definite, but it does not imply (unless k = n) that the full matrix H is positive
semidefinite, and so we need to add this requirement as an explicit constraint. (P ) is
a convex programming problem, with m linear inequality constraints and one positive
semidefiniteness constraint on the variable H . We say that H is feasible in (P ) if it satisfies
the constraints and has finite objective value, i.e., HY Y is positive definite.

Lemma 4.2. Problems (P ) and (P ′) are equivalent.

Proof. First assume that H is any feasible solution to (P ). Then HY Y is positive definite,
so that by Theorem A.11, H is positive semidefinite iff HZZ & H T

Y Z H−1
Y Y HY Z . It follows

that we may assume that HZZ =H T
Y Z H−1

Y Y HY Z without loss of generality, since replacing
HZZ by the right-hand side will maintain feasibility and keep the same objective value. If
we define E :=H−1

Y Y HY Z , we then have

H =
!

HY Y HY Y E
ET HY Y ET HY Y E

"
,

so that xT
i H xi = (yi + E zi )T HY Y (yi + E zi ) for all i . It follows that (E , H ′) := (E , HY Y )

is feasible in (P ′) with the same objective value.
Conversely, if (E , H ′) is feasible in (P ′), it is easily seen that

H :=
!

H ′ H ′E
ET H ′ ET H ′E

"

is feasible in (P ) with the same objective value.
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54 Chapter 4. Minimum-Area Ellipsoidal Cylinders

4.2 Duality for the MAEC problem
Now that we have a convex formulation, we can derive the dual of (P ). It is helpful to
rewrite this problem as follows:

minJ∈Sk ,H∈Sn −lndet(J )
(P ) J − HY Y = 0,

xT
i H xi ≤ k , i = 1, . . . , m,

H & 0.

We associate a symmetric matrix multiplier K ∈ Sk with the first constraint and
a nonnegative multiplier ui with the ith constraint of the second set to obtain the
Lagrangian

L(J , H ,K , u) :=−lndet(J )+K • J −K •HY Y +H • (X U X T )− keT u, (4.2.1)

where U as before is Diag (u), defined for J ∈ Sk , H ∈ Sn , K ∈ Sk , and u ∈ IRm . For
a given symmetric K and nonnegative u, we would like to minimize this with respect
to positive definite J and positive semidefinite H ’s. Let us introduce the notation: for
K ∈ Sk ,

K̄ :=
!

K 0
0 0

"
∈ Sn .

Then the Lagrangian can be written as the sum of two terms:

[−lndet(J )+K • J ]+ [H • (X U X T − K̄ )− keT u].

By the same argument as that above (2.1.4), we see that the infimum of the first term with
respect to J is −∞ unless K is positive definite, in which case the infimum is attained
by J = K−1 and equals lndet(K) + k. The infimum of the second term with respect to
H is −∞ unless X U X T − K̄ is positive semidefinite, since otherwise we can choose H
of the form λvvT , where v is an eigenvector corresponding to a negative eigenvalue of
X U X T−K̄ , and let λ→∞. If this matrix is positive semidefinite, the infimum is attained
by H = 0 and equals −keT u. Hence

min
J ,H

L(J , H ,K , u) = lndet(K)+ k − keT u

as long as X U X T −K̄ is positive semidefinite, and−∞ otherwise. Hence the Lagrangian
dual maxK ,u≥0{minJ ,H&0 H (J , H ,K , u)} can be written as

(D̃) max
K∈Sk ,u∈Rm

{lndet(K)+ k − keT u : X U X T − K̄ & 0, u ≥ 0}.

Since K can be scaled proportionally with u, an argument identical to that below (2.1.4)
shows that we can assume without loss of generality that eT u = 1. We are thus led to the
dual problem

maxu∈Rm ,K∈Sk g (u,K) := lndet(K)

(D) X U X T − K̄ & 0,
eT u = 1,

u ≥ 0.

(4.2.2)

Note that we are again reusing the notation g for the objective function of the dual
problem. We say (u,K) is feasible for (D) if it satisfies the constraints and has finite
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4.2. Duality for the MAEC problem 55

objective value, i.e., K is positive definite. Clearly (D) is a convex programming problem,
because the objective function (to be maximized) is concave, and the constraints are
positive semidefiniteness, equality, or nonnegativity constraints on linear functions of
the variables.

We can also express the dual problem solely in terms of u at the expense of a more
complicated objective function. We need the following result.

Proposition 4.3. Let u ∈ IRm be nonnegative. Then

(a) there exists E ∈ IRk×! with
E ZU ZT =−Y U ZT ; (4.2.3)

(b) E ZU 1/2 and
K(u) := Y U Y T − E ZU ZT ET (4.2.4)

are independent of which E satisfying (4.2.3) is chosen; and

(c) X U X T − K̄ is positive semidefinite iff K *K(u).

Proof. (a) We need to show that the row space of Y U ZT is contained in that of ZU ZT .
If not, there is a vector q that is orthogonal to the latter but not to the former, so that
ZU ZT q = 0 while Y U ZT q is nonzero. But then

0≤
%

p
q

&T # Y U Y T Y U ZT

ZU Y T ZU ZT

$%
p
q

&

= pT Y U Y T p + 2pT Y U ZT q + qT ZU ZT q ,

which is negative for p a sufficiently small negative multiple of Y U ZT q .
(b) Suppose E and E ′ both satisfy (4.2.3). Then (E −E ′)ZU ZT = 0, and hence ‖(E −

E ′)ZU 1/2‖2 = Trace((E − E ′)ZU ZT (E − E ′)T ) = 0, so E ZU 1/2 is uniquely defined. As
for K(u), we find

E ZU ZT ET − E ′ZU ZT (E ′)T = (E − E ′)ZU ZT E ′+ E ZU ZT (E − E ′)T = 0,

as desired.
(c) For any p and q and any E satisfying (4.2.3), we have

%
p
q

&T
(X U X T − K̄ )

%
p
q

&
=
%

p
q

&T # Y U Y T −K Y U ZT

ZU Y T ZU ZT

$%
p
q

&

=
%

p
q

&T # E ZU ZT ET −E ZU ZT

−ZU ZT ET ZU ZT

$%
p
q

&

+
%

p
q

&T ! K(u)−K 0
0 0

"%
p
q

&

= (q − ET p)T ZU ZT (q − ET p)+ pT (K(u)−K)p.

Hence if K * K(u), the left-hand side is nonnegative, while if not, we can choose p and
then q = ET p so that the left-hand side is negative.
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56 Chapter 4. Minimum-Area Ellipsoidal Cylinders

If E satisfies (4.2.3), there are several ways to write K(u):

K(u) = Y U Y T − E ZU ZT ET = Y U Y T + E ZU Y T

= Y U Y T +Y U ZT ET = (Y + EZ)U (Y + EZ)T . (4.2.5)

The equation above immediately shows that K(u) is positive semidefinite (since
X U X T is positive semidefinite, this also follows from (c) above), but we will be interested
in cases where it is positive definite.

From the proposition, K(u) is the maximal K (in the sense of the positive semidefi-
niteness order) with X U X T − K̄ positive semidefinite, but we would like to show that K
can be chosen as K(u) without loss of generality. For this we use

Proposition 4.4. If K and K ′ are matrices in Sk with K * K ′, then lndet(K)≤ lndet(K ′).

Proof. If K fails to be positive definite, lndet(K) is negative infinity and there is nothing
to prove. Hence assume K , and a fortiori K ′, are positive definite. Since−lndet is convex,
we have

−lndet(K)≥−lndet(K ′)+∇(−lndet)(K ′) • (K −K ′)
=−lndet(K ′)+ (K ′)−1 • (K ′ −K)≥−lndet(K ′),

since the trace product of two positive semidefinite matrices is nonnegative.

From the two propositions above, we see that (D) can be alternatively written as

(D ′) max{ ḡ (u) := lndet(K(u)) : u ∈ IRm , eT u = 1, u ≥ 0}. (4.2.6)

This is also a convex problem. We need to show that ḡ is concave. Indeed, if u and w are
nonnegative, with finite values of ḡ , and 0≤ λ≤ 1, then for v := (1−λ)u+λw, we have
X U X T−K(u)& 0 and XW X T−K(w)& 0, implying XV X T−[(1−λ)K(u)+λK(w)]&
0. Hence by Proposition 4.3, K(v) & (1− λ)K(u) + λK(w). Then Proposition 4.4 and
the concavity of the logdet function yield the desired result.

Note that K(u) =X U X T if k = n, so that we recover the dual of the MVEE problem
as expected.

We say u is dual feasible if it is feasible in (D ′) with a finite objective value, or
equivalently, if there is some K with (u,K) feasible for (D).

We now provide a direct proof of weak duality, since it highlights the conditions for
optimality.

Proposition 4.5. If H and (u,K) are feasible in (P ) and (D), respectively, then f (H ) ≥
g (u,K).

Proof. Once again we use the fact that the trace product of two positive semidefinite
matrices is nonnegative. So we have

0≤H • (X U X T − K̄) =
∑

i
ui xT

i H xi −H • K̄ ≤ k −HY Y •K . (4.2.7)

This shows that the positive definite matrix H 1/2
Y Y KH 1/2

Y Y has positive eigenvalues λ j that

sum to I •H 1/2
Y Y KH 1/2

Y Y = HY Y •K ≤ k; and of course the similar matrix HY Y K has the
same eigenvalues.

D
ow

nl
oa

de
d 

07
/1

5/
16

 to
 1

32
.2

39
.1

.2
31

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



4.2. Duality for the MAEC problem 57

Hence
f (H )− g (u,K) =−lndet(HY Y )− lndet(K)

=−lndet(HY Y K)
=− ln(

∏
j λ j )

=−k ln(
∏

j λ j )1/k
≥−k ln(

∑
j λ j /k)

≥−k ln(k/k) = 0,

(4.2.8)

where the first inequality is the arithmetic-geometric mean inequality and the second
follows from the bound on the sum of the eigenvalues from (4.2.7).

Now we establish strong duality.

Theorem 4.6. Under assumption (4.1.1), (P ) and (D) have optimal solutions H ∗ and
(u∗,K∗) and there is no duality gap: f (H ∗) = g (u∗,K∗).

Proof. We first prove that (P ) has an optimal solution. We proceed as in the MVEE
case. We note that εI is feasible for sufficiently small positive ε, and so we can add the
constraint that−lndet(HY Y )≤−k lnε. With the linear constraints on H and the positive
semidefiniteness requirement, this defines a closed set on which the objective function is
continuous.

Next, since we are assuming X has full rank, we can show exactly as in Theorem
2.2 that the feasible region is bounded. Hence an application of the Weierstrass theorem
implies that (P ) has an optimal solution, say H ∗. Then the equivalence of (P ) and (P ′)
implies that the latter also has an optimal solution, say (H †, E∗). We need to work with
(P ′) rather than (P ) when we discuss optimality conditions to avoid dealing with the
complicated semidefiniteness constraint.

The Karush–John optimality conditions for (P ′) imply that there are nonnegative
multipliers τ ∈ IR and u ∈ IR, not both zero, satisfying

−τ(H †)−1+
∑

i
ui (yi + E∗zi )(yi + E∗zi )

T = 0, (4.2.9)

2
∑

i
ui H †yi zT

i + 2
∑

i
ui H †E∗zi zT

i = 0, and (4.2.10)

ui ((yi + E∗zi )
T H †(yi + E∗zi )− k) = 0, i = 1, . . . , m. (4.2.11)

The first equation sets the derivative of τ f̄ (E , H ′)+
∑

i ui ((yi + E zi )T H ′(yi + E zi )− k)
with respect to H ′ at (E∗, H †) to zero, and the third is complementary slackness. The
second equation sets the derivative of the function above with respect to E at (E∗, H †) to
zero, noting that

(yi + E zi )
T H ′(yi + E zi )− k = yT H ′y − k + 2E • (H ′yi zT

i )+ E • (H ′E zi zT
i ).

Our first task is to show that τ is positive. Indeed, suppose that it is zero. Then (4.2.9)
implies that *∑

i
ui (yi + E∗zi )(yi + E∗zi )

T

+
•H † = 0,

and together with (4.2.11), we obtain
∑

i ui = 0, so that all multipliers vanish, which is a
contradiction. So τ is positive, and without loss of generality we may scale the multipliers

D
ow

nl
oa

de
d 

07
/1

5/
16

 to
 1

32
.2

39
.1

.2
31

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



58 Chapter 4. Minimum-Area Ellipsoidal Cylinders

so that it is 1. In this case, (4.2.9) gives
*∑

i
ui (yi + E∗zi )(yi + E∗zi )

T

+
•H † = (H †)−1 •H † = k .

Now, using (4.2.11), we find that
∑

i ui = 1.
Next, (4.2.10) can be written as 2H †(Y U ZT+E∗ZU ZT ) = 0, and since H † is positive

definite and hence nonsingular,

Y U ZT + E∗ZU ZT = 0.

Then (4.2.9) can be written as

(H †)−1 = Y U Y T +Y U ZT (E∗)T + E∗ZU Y T + E∗ZU ZT (E∗)T
= Y U Y T − E∗ZU ZT (E∗)T . (4.2.12)

Let K := K(u) = Y U Y T − E∗ZU ZT (E∗)T . Then (u,K) is feasible in (D). Moreover,
since K = (H †)−1, we find f̄ (H †, E∗) = g (u,K), so that by weak duality, both solutions
are optimal. It follows that (D) has an optimal solution, and also that all optimal solutions
have no duality gap.

Our proof also establishes the following.

Corollary 4.7. Any Karush–John point for (P ′) is an optimal solution.

Since −lndet is a strictly convex function (and lndet strictly concave), it follows that
the HY Y part of an optimal solution H to (P ) is unique, as is K in an optimal solution
(u,K) to (D). However, the rest of H and u can be far from unique, as illustrated below.

Example 4.8. Suppose we seek the minimum-area cylinder with k = 1 containing the
points xi , i = 1,2,3, that are the columns of the matrix

X =
!

3 2 1
0 2 3

"
.

Any positive semidefinite 2× 2 matrix can be written in the form

H :=H (β,η,φ) :=
!
β2 βη
βη η2+φ

"
;

the rather strange parametrization will become more intuitive below. Here without loss
of generality β ≥ 0 and we require φ ≥ 0. Then xT

i H xi ≤ 1 for all i iff 9β2 ≤ 1, (2β+
2η)2 + 4φ ≤ 1, and (β+ 3η)2+ 9φ ≤ 1. Hence if H (β,η,φ) is feasible, so is H (β,η, 0),
and in this case xT H x ≤ 1 defines a strip, that is the set of points between two parallel
lines; more precisely,

xT H (β,η, 0)x ≤ 1⇔−1≤βy +ηz ≤ 1.

In (P )we wish to minimize−lndet(HY Y ) =− lnβ2, so we setβ= 1/3, and for feasibility,
−4/9 ≤ η ≤ 1/6. This gives the set of optimal ellipsoidal cylinders, the set of all strips
defined by −1≤ y/3+ηz ≤ 1 for −4/9≤ η≤ 1/6. Note that, in the equivalent problem
(P ′), H ′ = 1/9 and E = 3η lies in [−4/3,1/2]. All these ellipsoidal cylinders share the
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4.2. Duality for the MAEC problem 59

0 1 2 3 4

0

2

4

6

8

Figure 4.2. Minimum-area (-length) ellipsoidal cylinder (strip).

same base one-dimensional ellipsoid, the interval joining [−3;0] and [3;0]. The points
and one possible cylinder, corresponding to η=−1/6, are shown in Figure 4.2.

In the dual problem, if u := (λ;µ; ν) and K = κ, then

X U X T − K̄ =
!

9λ+ 4µ+ ν −κ 4µ+ 3ν
4µ+ 3ν 4µ+ 9ν

"
,

so (u,K) is feasible if λ,µ, ν ≥ 0, λ+µ+ν = 1, and κ≤ 9λ+16µν/(4µ+9ν) (or µ= ν = 0
and κ≤ 9λ). Since we wish to maximize lndet(K) = lnκ, we set κ to 9, λ to 1, and µ and
ν to 0. Note that any E satisfies E ZU ZT =−Y U ZT , since both Y U ZT and ZU ZT are
zero matrices.

In the example above, there are several alternative optimal primal solutions but a
unique optimal dual solution. We now modify the example so that the optimal primal
solution is unique, but several optimal dual solutions and X U X T matrices are possible.

Example 4.9. We change the second and third columns of X to get

X :=
!

3 3 3
0 1 −1

"
.

Then H =H (β,η,φ) is feasible iff 9β2 ≤ 1, (3β+η)2+φ≤ 1, and (3β−η)2+φ≤ 1. We
wish to maximize− lnβ2 again, so the only optimal solution hasβ= 1/3, and η=φ= 0.
This corresponds to the strip−3≤ y ≤ 3.

In the dual problem, if u := (λ;µ; ν) and K = κ, then

X U X T − K̄ =
!

9−κ 3µ− 3ν
3µ− 3ν µ+ ν

"
,

so (u,K) is feasible ifλ,µ, ν ≥ 0, λ+µ+ν = 1, andκ≤ 9−9(µ−ν)2/(µ+ν) ifµ+ν > 0,κ≤
9 otherwise. Since we wish to maximize lnκ, we set κ to 9, and choose any nonnegative
λ,µ, ν summing to 1 withµ= ν. Corresponding to the optimal solutions u = (1;0;0) and
û = (0;1/2;1/2), we have

X U X T =
!

9 0
0 0

"
and X Û X T =

!
9 0
0 1

"
.
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60 Chapter 4. Minimum-Area Ellipsoidal Cylinders

For the first choice, any E satisfies E ZU ZT =−Y U ZT , while for the second, only E = 0
satisfies E ZÛ ZT =−Y Û ZT .

4.3 Optimality conditions for the MAEC problem
Having established strong duality, we easily obtain necessary and sufficient optimality
conditions.

Proposition 4.10. Suppose H and (u,K) are feasible for (P ) and (D), respectively. Then
each is optimal iff the following conditions hold:

(a) H • (X U X T − K̄ ) = 0;

(b) ui > 0 only if xT
i H xi = k; and

(c) HY Y = K−1.

Proof. Indeed, condition (c) alone implies that the two objective values are equal,
and hence that each solution is optimal. Conversely, if the solutions are optimal, by
strong duality they must have the same objective values. Hence we must have equality
throughout (4.2.8) and therefore throughout (4.2.7). The latter implies (a) and, since
H is feasible, (b). It also shows that the sum of the eigenvalues of HY Y K is exactly k.
The former implies that all these eigenvalues are equal, and hence all are 1. This then
gives (c).

We will show that these two definitions are related, but first we want to make some
remarks about the axis matrix E .

We have defined the axis matrix so far in two ways: corresponding to a primal solution
H via E = H−1

Y Y HY Z as in the proof of Lemma 4.2; and corresponding to a dual solution
u as a solution to E ZU ZT = −Y U ZT as in Proposition 4.3. We now show that these
two methods are related for feasible solutions if H , u, and K , where K = K(u), satisfy
condition (a) above.

Indeed, if H • (X U X T −K̄) = 0, then this equation remains true if HZZ is replaced by
ET HY Y E , where E satisfies the “primal” equation E =H−1

Y Y HY Z . Indeed, we can write

H =
!

HY Y HY Y E
ET HY Y ET HY Y E

"
+
!

0 0
0 HZZ − ET HY Y E

"
,

and since all the matrices above are positive semidefinite and therefore have a nonnegative
inner product with X U X T − K̄ , our assumption implies that all these inner products
must be zero. But then

0=
%!

I
ET

"
HY Y [I E]

&
•
#

Y U Y T −K Y U ZT

ZU Y T ZU ZT

$

=HY Y •
,
[I E]

#
Y U Y T −K Y U ZT

ZU Y T ZU ZT

$!
I

ET

"-
.

Since HY Y is positive definite and the second matrix above is positive semidefinite, the
latter must in fact be zero. This then implies that [I E] J is zero, where J is the positive
semidefinite square root of X U X T − K̄ , and hence

[I E]
#

Y U Y T −K Y U ZT

ZU Y T ZU ZT

$
= 0.
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4.3. Optimality conditions for the MAEC problem 61

We deduce that E ZU ZT = −Y U ZT , so E satisfies the “dual” equation. The reverse
implication does not hold, as shown below.

Let us illustrate these results in our two examples. In Example 4.8, several possible
H ’s are optimal; one, corresponding to the strip in Figure 4.2, is

H =
!

1/9 −1/18
−1/18 1/36

"
.

The only optimal u is (1;0;0) and the only optimal K is 9. Then X U X T − K̄ is the zero
matrix. Thus optimality condition (a) holds trivially. Also, xT

i H xi is 1, 1/9, and 1/36 for
i = 1,2,3, respectively, confirming (b). Finally, HY Y is 1/9 and K is 9, so (c) holds. For
this H , E = H−1

Y Y HY Z = −1/2. The full range of E ’s corresponding to all optimal H ’s
turns out to be [−4/3,1/2] (in our previous notation, E = η/β with β = 1/3 and η ∈
[−4/9,1/6]). However, any E satisfies E ZU ZT =−Y U ZT , since Y U ZT = ZU ZT = 0.

In Example 4.9, there is only one optimal H given by

H =
!

1/9 0
0 0

"
.

Several optimal u’s are possible, but only one K , which is 9. If u = (1;0;0), then X U X T−
K̄ is the zero matrix and condition (a) holds trivially. If u = (0;1/2;1/2), then

X U X T − K̄ =
!

0 0
0 1

"
.

Note that (a) still holds. Next xT
i H xi is 1 for i = 1,2,3, confirming (b) for either choice

of u above, or for any convex combination, and (c) holds as above. Since there is a unique
H , there is a unique E = H−1

Y Y HY Z , equal to 0. If u = (0;1/2;1/2), only E = 0 satisfies
E ZU ZT = −Y U ZT , but for u = (1;0;0) any E works, since Y U ZT = ZU ZT = 0 in
this case.

If H and (u,K) are optimal in (P ) and (D), respectively, we can assume as above that
HZZ = ET HY Y E with E =H−1

Y Y HY Z , and then it follows from the optimality conditions
above that (yi+E zi )T K−1(yi+E zi )≤ k for all i , with equality if ui is positive. Moreover,
E also satisfies E ZU ZT =−Y U ZT . It is hard to recognize optimality or near-optimality
of (u,K) alone without choosing a specific corresponding E . Thus the definition below
refers to a triple (u,K , E).

Definition 4.11. We call a triple (u,K , E) dual feasible if u ≥ 0, eT u = 1, E ZU ZT =
−Y U ZT , and K = Y U Y T −E ZU ZT ET is positive definite. We call such a triple ε-primal
feasible if (yi + E zi )T K−1(yi + E zi ) ≤ (1+ ε)k for all i , and ε-approximately optimal if
moreover (yi + E zi )T K−1(yi + E zi )≥ (1− ε)k whenever ui > 0.

Note that u is dual feasible if there are some K , E such that (u,K , E) is dual feasible.
Also, in parallel with (3.1.11), we see that, withωi (u,K , E) := (yi + E zi )T K−1(yi + E zi )
for each i ,

uTω(u,K , E) =
∑

i
ui (yi + E zi )

T K−1(yi + E zi ) = (Y + EZ)U (Y + EZ)T •K−1 = k ,

(4.3.1)
where the last equation follows from (4.2.5).

It is then easy to show the following.
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62 Chapter 4. Minimum-Area Ellipsoidal Cylinders

Proposition 4.12. Suppose (u,K , E) is ε-primal feasible (in particular, it could be ε-
approximately optimal). Define H =H (u,K , E) by setting HY Y = K−1, HY Z =HY Y E, and
HZZ = ET HY Y E. Then (1+ ε)−1H is feasible in (P ), and both this solution and (u,K) are
within k ln(1+ ε) of being optimal in their respective problems. Furthermore, the ellipsoidal
cylinder C(E , (1+ ε)−1HY Y ) contains all xi and comes within a factor (1+ ε)k/2 of having
the smallest cross-sectional area among such cylinders.

Proof. The first claim follows directly from the definition of H and the hypothesis, and
the second is a consequence of the fact that f ((1+ ε)−1H ) and g (u,K) differ by exactly
k ln(1+ ε). The final claim follows by the relationship between the objective function of
(P ) and the area of the cross section of C(E , (1+ ε)−1HY Y ).

The same proof shows that, if (u,K) is feasible in (D) and E is any matrix in IRk×!

such that (yi + E zi )T K−1(yi + E zi ) ≤ k , i = 1, . . . , m, then (u,K) is optimal in (D) (and
H (u,K , E) as above is optimal in (P )).

We conclude this section with yet another characterization of the axis matrix E . As a
consequence, we see that the bound k above is the best possible.

Proposition 4.13. Let Ē ZU ZT =−Y U ZT . Then Ē minimizes K(E) := (Y+EZ)U (Y+
EZ)T in the sense that, for all E ∈ IRk×!, K(E)& K(Ē). Moreover, Ê minimizes K(E) in this
sense iff Ê ZU ZT =−Y U ZT .

(We are abusing notation here by using K(E), whereas before we defined K(u). However,
as we have seen in (4.2.5), if Ē ZU ZT =−Y U ZT , then K(Ē) =Y U Y T − Ē ZU ZT ĒT =
K(u).)

Proof. We have

K(E)−K(Ē)

= Y U Y T + E ZU Y T +Y U ZT ET + E ZU ZT ET

−Y U Y T − Ē ZU Y T −Y U ZT ĒT − Ē ZU ZT ĒT

= (E − Ē )ZU Y T +Y U ZT (E − Ē )T + E ZU ZT ET − Ē ZU ZT ĒT

=−(E − Ē )ZU ZT ĒT − Ē ZU ZT (E − Ē )T + E ZU ZT ET − Ē ZU ZT ĒT

= (E − Ē )ZU ZT (E − Ē )T & 0.

Moreover, if Ê also minimizes K(E) in this sense, then K(Ê) & K(Ē) as above and
K(Ē) & K(Ê), so their difference is zero. Hence (Ê − Ē)ZU ZT (Ê − Ē)T = 0, and
then by considering the positive semidefinite square root of ZU ZT , we find as in the
argument below Proposition 4.10 that (Ê − Ē)ZU ZT = 0, which implies that Ê also
satisfies Ê ZU ZT =−Y U ZT .

As a corollary, we prove a result related to ε-primal feasibility.

Corollary 4.14. For any (u,K) feasible in (D), and for any matrix E in IRk×!, we have
maxi (yi + E zi )T K−1(yi + E zi )≥ k.
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4.4. Dk -optimal design in statistics 63

Proof. Indeed, since (u,K) is feasible only if (u,K(u)) is, and K * K(u) so that K−1 &
K(u)−1 (see Corollary A.7), it suffices to assume that K = K(u). In this case,

max
i
(yi + E zi )

T K−1(yi + E zi )≥
∑

i
ui (yi + E zi )

T K−1(yi + E zi )

= K−1 • (Y + EZ)U (Y + EZ)T .

But K−1 is positive definite, so by the proposition, the right-hand side is at least K−1 •
(Y + ĒZ)U (Y + ĒZ)T = K−1 •K = k, where Ē satisfies Ē ZU ZT =−Y U ZT .

4.4 Dk-optimal design in statistics
We now return to the D-optimal design problem in statistics as discussed in Section 1.3,
but now we suppose we are only interested in the first k (out of n) parameters.

As before, we assume a random variable V depends on some independent variables
x(t ) through some unknown parameters θ ∈ IRn , but now we are only interested in the
first k of these parameters (the others are sometimes termed “nuisance” parameters). We
accordingly divide θ into θY ∈ IRk and θZ ∈ IR!, and similarly x(t ) into y(t ) ∈ IRk and
z(t ) ∈ IR!, to get the model

V = x(t )T θ+ ε= y(t )T θY + z(t )T θZ + ε,

where, as before, ε is a normal random variable with mean 0 and variance σ2.
To estimate θY , we observe V at m different values of t , corresponding to xi =

(yi ; zi ) := x(ti ), i = 1, . . . , m, obtaining the vector v ∈ IRm . We denote by X the n ×m
matrix whose columns are the xi ’s, and similarly Y and Z . Again our estimator for θ is
the (or a) solution of the least-squares problem minθ ‖X T θ−v‖, which we prefer to write
in the equivalent form

min
θ

1
2
‖X T θ− v‖2 =

1
2
‖Y T θY +ZT θZ − v‖2.

Since the objective function is convex and differentiable, it is minimized exactly at those θ̂
satisfying the condition that the gradient vanishes, i.e., X X T θ̂ =X v. We will not assume
that X has rank n, and hence we cannot claim that this has a unique solution. However,
it is important to realize that it always has at least one solution. Indeed, more generally
we have

Proposition 4.15. Suppose W ∈ IRn×m and u ∈ IRm is nonnegative. Then, with U :=
Diag (u), W UW T p =W U q has a solution for all q ∈ IRm.

Proof. We can split U 1/2q into a part that lies in the nullspace of W U 1/2 and a part
(W U 1/2)T r that lies in the range of (W U 1/2)T . Then p = r solves the system.

Applying this with W =X and u the vector of 1’s shows that a solution θ exists.
Let us write the system in partitioned form:

#
Y Y T Y ZT

ZY T ZZT

$*
θ̂Y

θ̂Z

+
=
%

Yv
Zv

&
.
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64 Chapter 4. Minimum-Area Ellipsoidal Cylinders

Now from Proposition 4.3 (with U the identity) there is a matrix E satisfying E ZZT =
−Y ZT , and by premultiplying the second set of equations by E and adding to the first
set, the system above is equivalent to

(Y Y T − E ZZT ET )θ̂Y = (Y Y T + E ZY T )θ̂Y = (Y + EZ)v, ZZT θ̂Z = Z(v −Y T θ̂Y ).

We will assume that K := Y Y T −E ZZT ET is nonsingular, so that θ̂Y is unique and given
by K−1(Y +EZ)v (K and EZ do not depend on the choice of E by Proposition 4.3), and
then there is always a corresponding θ̂Z by Proposition 4.15 applied to W = Z ; θ̂Z may
not be unique if Z does not have rank !.

Since v is a sample from the random variable Y T θY + ZT θZ + ε, where ε is an
m-dimension N (0,σ2I )-distributed random variable, θ̂Y is a sample from the random
variable

Θ̂Y := K−1(Y + EZ)(Y T θY +ZT θZ + ε)
= K−1(Y + EZ)((Y + EZ)T θY + ε)
= θY +K−1(Y + EZ)ε,

where the second equation used (Y + EZ)ZT = 0 and the third equation used K = (Y +
EZ)(Y + EZ)T from (4.2.5), with U the identity. Hence our estimator is unbiased, and
its variance is

K−1(Y + EZ)E(εεT )(Y + EZ)T K−1 = σ2K−1.

As before, our interest is in designing an experiment, and so we will choose a distribution
given by weights u on the points xi , so that the variance from making N experiments will
be

σ2

N
(Y U Y T − E ZU ZT ET )−1,

assuming that we make an experiment at point xi exactly N ui times. A Dk -optimal
design is one where we choose the weights u to minimize the determinant of this variance
matrix, ignoring the requirement that each N ui should be integer. We are thus led to the
optimization problem

maxu lndet(K(u))
(D ′′) eT u = 1,

u ≥ 0,

which coincides exactly with the dual problem (D ′) to the MAEC problem.
It can be seen that the discussion in the previous section is in a sense related to

the equivalence of D-optimality and G-optimality (see Sections 1.3 and 2.2), but is
complicated by the need to choose the correct axis matrix in considering the criterion
analogous to G-optimality: u minimizes maxi (yi + E zi )T K(u)−1(yi + E zi ) and achieves
the optimal value k as long as we choose the appropriate E .

4.5 Collision detection
Now we turn to a very different application of the MAEC problem. Suppose we have
planned trajectories for a collection of objects in IR3: these could be robotic arms and
parts, or characters in an animation. We want to know if these trajectories will lead to
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4.6. Notes and references 65

collisions; if so, we need to revise the trajectories to either avoid the collisions or take
them into account.

For each object, suppose we have a set (yi ; ti ), i = 1, m, of the space-time coordinates
of key points of the object. We approximate the object by an ellipsoid moving at a uniform
speed in a fixed direction without rotation. The latter gives rise to the set of space-time
pairs defined by

(y − v t − ȳ)T H ′(y − v t − ȳ)≤ 3,

which is a noncentral ellipsoidal cylinder. The minimum-volume ellipsoid with such
a corresponding cylinder containing all the points (yi , ti ) can be found as discussed in
Section 4.1, by finding the minimum-area (central) ellipsoidal cylinder containing all
(yi ; ti ; 1) in R5 with k = 3. If the key points contain all vertices of a polytopal object,
then this ellipsoidal cylinder is a conservative model of the object’s movement, in the
sense that, if two such ellipsoidal cylinders do not intersect, then there is no collision
between the objects, at least at the common times of observation.

How do we detect if two such cylinders intersect? We would like to determine if there
is some (y; t ) ∈ IR4 satisfying

(y − vj t − ȳ j )
T H ′j (y − vj t − ȳ j )≤ 3

for j = 1,2. First, we perform a Cholesky factorization of H ′1 and scale it so that the first
of the two inequalities above becomes

‖L(y − v1 t − ȳ1)‖ ≤ 1.

Next, we change the variables to w := L(y − v1 t − ȳ1) and t , so that y − v2 t − ȳ2 =
L−1w + (v1 − v2)t + (ȳ1 − ȳ2). Now we can write (y − v2 t − ȳ2)T H ′2(y − v2 t − ȳ2) as a
convex quadratic function of w and t , and we want to know if its minimal value subject
to ‖w‖ ≤ 1 is at most 3. We can minimize this as a function of t (which will be a linear
function of w) and substitute this in; the result will be a convex quadratic function of w
alone, which we wish to minimize subject to the norm constraint on w. This is exactly
the so-called trust-region subproblem of nonlinear programming, and there are efficient
(both theoretically and practically: see, e.g., [21, 87]) methods for its solution.

If the objects are moving in a gravitational field, they may be better described by
parabolic trajectories:

y = ȳ + v t +
1
2

g t 2,

where g ∈ IR3 represents the gravitational field. We can then proceed exactly as above after
replacing y and yi throughout by ŷ := y− (1/2)g t 2 and ŷi := yi − (1/2)g t 2

i , respectively.

4.6 Notes and references
The problem of finding the minimum-area ellipsoidal cylinder first arose in the context
of Dk -optimal design. (We must comment briefly on our notation. Statisticians have
consistently used k for the dimension of the full space, our n, and s for the number of
parameters of interest, our k. The choice made here was dictated by the customary usage
in optimization of n and m as the dimensions.) Again, Silvey [74] in 1972 raised the
question of whether this problem was related to the optimal design problem, although
Sibson’s reply [70] only dealt with the minimum-volume ellipsoid case, k = n. A
year later, Silvey and Titterington [72] gave precise formulations of these problems in
the forms (P ′) and (D ′) and established duality properties. They termed the MAEC
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66 Chapter 4. Minimum-Area Ellipsoidal Cylinders

problem the “thinnest cylinder” problem. Titterington [79] discusses both the centered
and the noncentered MAEC problems, and shows the reduction of the noncentered
MVEE problem, both to a higher-dimensional centered MVEE problem and to a higher-
dimensional centered MAEC problem. He also shows that the noncentered MAEC
problem can be reduced to a higher-dimensional centered MAEC problem.

As mentioned above, duality questions were raised by Silvey and dealt with formally
by Silvey and Titterington. Optimality conditions have a more checkered history. Kiefer
[51] gave some incomplete optimality conditions for Dk -optimality, and Karlin and
Studden [46] obtained conditions that also allowed ZU ZT to be singular. Atwood [8]
noted an ambiguity in these conditions related to the matrix E and clarified them. A
clear statement appears in Silvey and Titterington.

Further discussion of the Dk -optimal design problem appears in the books of Fedorov
[27], Silvey [73], and Pukelsheim [63]. Instead of just the first k (s ) parameters,
statisticians are often interested in certain linear combinations of the parameters, so that
AT θ replaces θY as the object of interest. By a change of variables, this can be reduced to
the case treated here, for which the dual MAEC problem is more intuitive.

The application to collision detection is believed to be new.
Once again, our claim that (P ′) is nonconvex is perhaps too strong, since the

constraints can be written in the form ‖(H ′)1/2yi + (H ′)1/2E zi‖ ≤
/

k , i = 1, . . . , m.
When expressed in terms of the symmetric matrix B := (H ′)1/2 and the rectangular matrix
F := (H ′)1/2E , these are convex constraints, and the objective function can be written as
min−2 lndet(B). However, the resulting constraints are much more complicated than our
linear constraints in (P ) if k > 1. On the other hand, for k = 1, this can be written as a
linear programming problem in the scalar variableβ= B and the vector variable f = F T :
max2β, −1≤ yiβ+ f T zi ≤ 1 for all i .
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Chapter 5

Algorithms for the MAEC
Problem

Here we develop and analyze first-order algorithms for the solution of the MAEC
problem

minH∈Sn f (H ) :=−lndet(HY Y )
(P ) xT

i H xi ≤ k , i = 1, . . . , m,
H $ 0

and its dual
maxu∈Rm ,K∈Sk g (u,K) := lndet(K)

(D) X U X T − K̄ $ 0,
eT u = 1,

u ≥ 0

with its equivalent form

(D ′) max{ ḡ (u) := lndet(K(u)) : u ∈ IRm , eT u = 1, u ≥ 0}.

Recall that, as long as ZU ZT is nonsingular,

K(u) =Y U Y T −Y U ZT (ZU ZT )−1ZU Y T .

The partial derivative of K(u) with respect to ui can be obtained by differentiating this
equation using the product rule. Recalling that

E :=−Y U ZT (ZU ZT )−1

when the right-hand side is defined, we find this partial derivative is

yi yT
i + E zi yT

i + yi zT
i ET + E zi zT

i ET = (yi + E zi )(yi + E zi )
T ,

where the last term on the left-hand side uses the derivative of the inverse in (A.4.4). The
chain rule then yields

∇ ḡ (u) =ω(u) := ((yi + E zi )
T K(u)−1(yi + E zi ))

m
i=1.

As in Chapter 3, we can use the derivative of the inverse matrix in (A.4.4) to obtain second
derivatives:

(∇2 ḡ (u))i j = ((yi + E zi )
T K(u)−1(yj + E zj ))

2, i , j = 1, . . . , m.

67
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68 Chapter 5. Algorithms for the MAEC Problem

However, it is important to realize that, when ZU ZT is singular, ḡ may not be
differentiable, although it is always concave. Consider the following simple perturbation
of Example 4.9.

Example 5.1. We seek the minimum-area cylinder with k = 1 containing the points
xi , i = 1,2,3, that are the columns of the matrix

X =
!

2 3 3
0 1 −1

"
.

An analysis similar to that used in Examples 4.8 and 4.9 shows that the unique optimal
solution to (P ) is

H :=
!

1/9 0
0 0

"

with objective value ln9, and the unique optimal solution to (D) is ū := (0;1/2;1/2)with
the same objective. However, let us consider the point u := (1;0;0). We will consider
the directional derivatives of ḡ in the directions d2 := (−1;1;0), d3 := (−1;0;1), and
d := d2+ d3. For û := u + εd2 (ε≥ 0), we have

X Û X T =
!

4+ 5ε 3ε
3ε ε

"
,

so that K(û) = 4− 4ε and the directional derivative of lndet(K(u)) in direction d2 is −1.
For û := u + εd3 (ε ≥ 0), the situation is exactly the same, except that the off-diagonal
entries of X Û X T are negated, so that again K(û) = 4− 4ε and the directional derivative
of lndet(K(u)) in direction d3 is −1. Finally, for û := u + εd (ε≥ 0), we have

X Û X T =
!

4+ 10ε 0
0 2ε

"

so that K(û) = 4+ 10ε and the directional derivative of lndet(K(u)) in direction d is 5/2.
Since this is not the sum of −1 and −1, while d is the sum of d2 and d3, we conclude that
ḡ is not differentiable at this u.

In the first section below we discuss the derivative properties of ḡ in more detail.
Section 5.2 considers coordinate-ascent algorithms assuming that ZU ZT remains nonsin-
gular at all iterations. Global and local convergence properties are discussed in Sections 5.3
and 5.4, while Section 5.5 treats the case that ZU ZT may be singular at some iterations.
Finally, in Section 5.6 we give some computational results.

5.1 Derivative properties of the dual objective function
First we note that by combining Propositions 4.4 and 4.13 we obtain

Proposition 5.2. We can write ḡ as the pointwise minimum of continuously differentiable
concave functions:

ḡ (u) =min{lndet([Y + EZ]U [Y + EZ]T ) : E ∈ IRk×#)} (5.1.1)

for all dual feasible u, and the minimum is attained by all E satisfying E ZU ZT =−Y U ZT .
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5.1. Derivative properties of the dual objective function 69

Indeed, it follows from Section A.7 that there is a compact set F of k × # matrices so
that, for any u ≥ 0 with eT u = 1, there is some E ∈ F satisfying E ZU ZT = −Y U ZT .
We conclude that in the proposition above, we can restrict E in (5.1.1) to F , and then a
standard result in convex analysis gives the subdifferential of ḡ .

Corollary 5.3. For any dual feasible u, the subdifferential of ḡ at u is

∂ ḡ (u) := {z ∈ IRm : zT (v − u)≥ ḡ (v)− ḡ (u) for all v ∈ IRm}
= conv{[(yi + E zi )T K(u)−1(y + E zi )]mi=1 : E ∈F , E ZU ZT =−Y U ZT }.

(5.1.2)

We next consider directional derivatives of ḡ . We assume we are at some u feasible
for (D) and we want to move towards or away from some vertex ei of the unit simplex.
So we will be moving in direction di := ei − u, or maybe its negative. (Note that we used
this convention above.) We use ∂i to denote the directional derivative in direction di .

Proposition 5.4.

(i) Suppose zi lies in the range of ZU ZT , so that ZU ZT vi = zi for some vi . Then, for
any E with E ZU ZT =−Y U ZT , we have:

(a) for any ε sufficiently small in absolute value, U (ε) := Diag (u + εdi ), and η :=
ε/(1− ε+ εvT

i zi ),

[E −η(yi + E zi )v
T
i ]ZU (ε)ZT =−Y U (ε)ZT ; (5.1.3)

(b) ∂i K(u) = (yi + E zi )(yi + E zi )T −K(u); and
(c) ∂i ḡ (u) =ωi − k, whereωi := (yi + E zi )T K(u)−1(yi + E zi ).

(ii) Suppose zi does not lie in the range of ZU ZT . Then, for any E with E[ZU ZT +
zi zT

i ] =−[Y U ZT + yi zT
i ], we have

yi + E zi = 0 (5.1.4)

and:

(a) for any nonnegative ε and U (ε) as above,

E ZU (ε)ZT =−Y U (ε)ZT ; (5.1.5)

(b) ∂i K(u) = (yi + E zi )(yi + E zi )T −K(u) =−K(u); and
(c) ∂i ḡ (u) =ωi − k =−k, whereωi := (yi + E zi )T K(u)−1(yi + E zi ) = 0.

(iii) If 0< ui < 1, then case (i) above holds and, for any E with E ZU ZT =−Y U ZT , we
have:

(a) for any ε sufficiently small in absolute value, U (ε) := Diag (u + εdi ), and η :=
ε/(1− ε+ εvT

i zi ),

[E −η(yi + E zi )v
T
i ]ZU (ε)ZT =−Y U (ε)ZT ; (5.1.6)

(b) the directional derivative of K(u) in direction −di is K(u)− (yi + E zi )(yi +
E zi )T ; and
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70 Chapter 5. Algorithms for the MAEC Problem

(c) the directional derivative of ḡ (u) in direction −di is k −ωi , where ωi := (yi +
E zi )T K(u)−1(yi + E zi ).

Proof. For part (i), note first that η is defined for any ε sufficiently small in absolute value,
and also that η= δ/(1+ δvT

i zi ) for δ := ε/(1− ε). We have

[E −η(yi + E zi )v
T
i ][ZU ZT + δzi zT

i ]
=−Y U ZT + δE zi zT

i −η(yi + E zi )(zi + δvT
i zi zi )

T

=−Y U ZT + δE zi zT
i − δ(yi + E zi )z

T
i

=−[Y U ZT + δyi zT
i ],

and multiplying by 1− ε proves (a). Hence, since η= δ+ o(ε),

K(u + δei )
= Y U Y T + δyi yT

i − [E −η(yi + E zi )v
T
i ][ZU ZT + δzi zT

i ][E −η(yi + E zi )v
T
i ]

T

= K(u)+ δ(yi yT
i +(yi + E zi )v

T
i ZU ZT ET − E zi zT

i E + E ZU ZT vi (yi + E zi )
T )+ o(ε)

= K(u)+ δ(yi yT
i +(yi + E zi )z

T
i ET − E zi zT

i ET + E zi (yi + E zi )
T )+ o(ε)

= K(u)+ δ(yi + E zi )(yi + E zi )
T + o(ε).

Multiplying by 1−ε gives K(u+εdi ) = (1−ε)K(u)+ε(yi +E zi )(yi +E zi )T + o(ε), and
this proves (b). Finally, the chain rule gives

∂i ḡ (u) = (∇(lndet)(K(u)))•∂i K(u) =K(u)−1 • [(yi +E zi )(yi +E zi )
T −K(u)] =ωi −k ,

giving (c).
For part (ii), since zi does not lie in the range of ZU ZT , there is some vector vi with

ZU ZT vi = 0 but zT
i vi nonzero. Without loss of generality we suppose zT

i vi = 1, and
then [ZU ZT + zi zT

i ]vi = 0+(zT
i vi )zi = zi . Define E (maybe not uniquely) to satisfy

E[ZU ZT + zi zT
i ] =−[Y U ZT + yi zT

i ]. (5.1.7)

Such an E exists by Proposition 4.3. Then E zi = E[ZU ZT + zi zT
i ]vi = −[Y U ZT +

yi zT
i ]vi = −Y U ZT vi − yi . But vT

i ZU ZT vi = 0 implies U 1/2ZT vi = 0, and hence
Y U ZT vi = 0. Thus yi +E zi = 0, as desired. This equality and (5.1.7) give (a). So, with δ
as above,

K(u + δei ) = Y U Y T + δyi yT
i − E[ZU ZT + δzi zT

i ]E
T

= K(u)+ δ(yi yT
i − E zi zT

i E)
= K(u) = K(u)+ δ(yi + E zi )(yi + E zi )

T ,

using yi =−E zi . Multiplying by 1− ε gives K(u+ εdi ) = (1− ε)K(u)+ ε(yi +E zi )(yi +
E zi )T , from which (b) follows, and then (c) is immediate as in the proof of part (i).

Finally, for part (iii) we note that Proposition 4.15 implies that whenever ui is positive,
zi lies in the range of ZU ZT . Then the analysis for part (i) holds, and the results hold
by noting that the directional derivatives in the direction −di are the derivatives of the
appropriate expressions with respect to −ε.
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5.2. Coordinate-ascent algorithms 71

Example 5.5. Let us revisit Example 5.1. Recall that k = 1,

X =
!

2 3 3
0 1 −1

"
,

and, for u := (1;0;0),

X U X T =
!

4 0
0 0

"
.

For i = 2, case (ii) above holds, and we find that ZU ZT+zi zT
i = 1 and Y U ZT+yi zT

i = 3,
so E = −3 and indeed yi + E zi = 0. For any positive ε and U (ε) := Diag (u + εdi ), we
have

X U (ε)X T =
!

4+ 5ε 3ε
3ε ε

"
,

so that E ZU (ε)ZT = −Y U (ε)ZT and, from our previous calculation, ∂i ḡ (u) = −1 =
−k, verifying the conclusions of the proposition.

Now let us add a new column (3;0) to X (as in Example 4.9) in the fourth position
and consider the case i = 4. Then, even though ZU ZT is singular, zi lies in the range
of ZU ZT , and so case (i) occurs. We find that any E satisfies E ZU ZT = −Y U ZT , and
since now

X U (ε)X T =
!

4+ 5ε 0
0 0

"
,

we also have that any E satisfies E ZU (ε)ZT = −Y U (ε)ZT . So K(u(ε)) = 4 + 5ε,
from which ∂i ḡ (u) = 5/4. This agrees with the conclusion of part (i), since (yi +
E zi )T K(u)−1(yi + E zi ) = 3(1/4)3= 9/4.

5.2 Coordinate-ascent algorithms
Suppose we have a current feasible point u for (D); recall that this means that u satisfies
the constraints, so that u is nonnegative and eT u = 1, and that the objective function
ḡ (u) = lndet(K(u)) is finite, so that K(u) is positive definite. We will assume in this
and the next two sections that ZU ZT is positive definite, so that K(u) = Y U Y T −
Y U ZT (ZU ZT )−1ZU Y T .

Suppose we also have at our disposal

ω :=ω(u) =∇ ḡ (u) = (yi + E zi )
T K(u)−1(yi + E zi ))

m
i=1, (5.2.1)

E = −Y U ZT (ZU ZT )−1, and scaled Cholesky factorizations of X U X T , ZU ZT , and
K(u):

X U X T =φ−1LLT , ZU ZT =φ−1LZ LT
Z , K := K(u) =φ−1LK LT

K , (5.2.2)

with φ positive. (We will see below that the latter two factorizations come for free from
the first if we make a simple modification.)

As in Chapter 3, we consider the following update of u:

u+ := (1−τ)u +τei . (5.2.3)

Note again that u+ can also be viewed as the result of taking a coordinate-ascent step to

û := u +λei
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72 Chapter 5. Algorithms for the MAEC Problem

with λ := τ/(1−τ), followed by a scaling to keep the coordinate sum equal to one: u+ :=
u+(λ) := (1+λ)−1 û = (1−τ)û . Note that u+ remains nonnegative as long as

−ui ≤ λ<∞, (5.2.4)

which we henceforth assume. Note that λ =∞ leads to u+ = ei , but this is infeasible if
k > 1, since then K(u+) is singular. As we mentioned earlier, the case k = 1 reduces to a
linear programming problem, so we do not consider it further, except for examples.

Let us examine the resulting changes in K , ḡ , and E . We have ZU+ZT = (1 +
λ)−1(ZU ZT +λzi zT

i ), and hence

(ZU+ZT )−1 = (1+λ)((ZU ZT )−1−µ(ZU ZT )−1zi zT
i (ZU ZT )−1),

with µ := λ/(1+λζi ), where

ζi := ζi (u) := zT
i (ZU ZT )−1zi , ξi := ξi (u) := xT

i (X U X T )−1xi ,

and we similarly abbreviate ωi (u) toωi . Correspondingly,

(X U+X T )−1 = (1+λ)((X U X T )−1− ν(X U X T )−1xi xT
i (X U X T )−1),

with ν := λ/(1+λξi ).
Since Y U+ZT = (1+λ)−1(Y U ZT +λyi zT

i ), we find

E+ =−(Y U ZT +λyi zT
i )((ZU ZT )−1−µ(ZU ZT )−1zi zT

i (ZU ZT )−1)

= E −λyi zT
i (ZU ZT )−1−µE zi zT

i (ZU ZT )−1+λµζi yi zT
i (ZU ZT )−1

= E −µ(yi + E zi )((ZU ZT )−1zi )
T .

Then we obtain

K+ = Y U+Y T + E+ZU+Y T

= (1+λ)−1(Y U Y T +λyi yT
i +(E −µ(yi + E zi )zT

i (ZU ZT )−1)(ZU Y T +λzi yT
i ))

= (1+λ)−1(K +λyi yT
i +λE zi yT

i +µ(yi + E zi )(E zi )T −λµζi (yi + E zi )yT
i )

= (1+λ)−1(K +λ(yi + E zi )yT
i +µ(yi + E zi )(E zi )T − (λ−µ)(yi + E zi )yT

i )
= (1+λ)−1(K +µ(yi + E zi )(yi + E zi )T ).

(5.2.5)
From this it is easy to derive an update ofω, but an indirect method provides insight

and gives further information. The proposition below relatesω to ξ and ζ , and these can
be updated using the formulae from Chapter 3.

Proposition 5.6. With E and K as above, we have

X U X T =
#

Y U Y T Y U ZT

ZU Y T ZU ZT

$
=
!

I −E
0 I

"!
K 0
0 ZU ZT

"!
I 0
−ET I

"
(5.2.6)

and
det(X U X T ) = det(K) det(ZU ZT ). (5.2.7)

Further, if K and ZU ZT are positive definite, then

ωi = ξi − ζi . (5.2.8)
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5.2. Coordinate-ascent algorithms 73

Proof. The first equation follows from multiplying out the right-hand side, and then the
determinant formula is immediate by taking the determinant on both sides. If K and
ZU ZT are positive definite, then all matrices in (5.2.6) are nonsingular, and taking the
inverses we obtain

(X U X T )−1 =
!

I 0
ET I

"!
K−1 0

0 (ZU ZT )−1

"!
I E
0 I

"
.

Now pre- and postmultiplying by xi gives

ξi = xT
i (X U X T )−1xi = (y

T
i + zT

i ET zi )
!

K−1 0
0 (ZU ZT )−1

"%
yi + E zi

zi

&

=ωi + ζi ,

as desired.

Notice that (5.2.8) provides an alternative proof of (4.3.1) when it applies, since (3.1.11)
shows uT ξ = n and uT ζ = #= n− k follows similarly.

From (3.1.8) we obtain an update of ξi , and similar reasoning leads to an update of ζi :

ξi (u+) =
(1+λ)ξi

1+λξi
, ζi (u+) =

(1+λ)ζi

1+λζi
. (5.2.9)

Then (5.2.8) gives

ωi (u+) =
(1+λ)ωi

(1+λξi )(1+λζi )
. (5.2.10)

How should we choose the index i and the stepsize λ? As for the minimum-volume
ellipsoid problem, we choose i according to the directional derivative of the objective in
the direction d = ei − u. Using Proposition 5.4, we choose either i with ωi maximum,
or i with ui positive and ωi minimum. From (4.3.1), the largest ωi is at least k and the
smallest corresponding to a positive ui is at most k. For the stepsize, note that

det K(u+(λ)) = (1+λ)
−k (1+µωi )det K

from (5.2.5), so that the objective function in terms of λ is

γ̄ (λ) := lndet(K(u+(λ)))
= −k ln(1+λ)+ ln

'
1+ λωi

1+λζi

(
+ lndet(K)

= −k ln(1+λ)+ ln(1+λξi )− ln(1+λζi )+ lndet(K).
(5.2.11)

Its derivative is

γ̄ ′(λ) =− k
1+λ

+
ξi

1+λξi
− ζi

1+ λζi

=
−k

(1+λ)(1+λξi )(1+λζi )
(aλ2− 2bλ+ c),

where a := ξiζi ≥ 0, b := −ζi − ωi
2 +

ωi
2k ≤ 0, and c := 1 − ωi

k . Note that the term
multiplying the quadratic is negative for positive λ and for λ greater than −1/ξi . From
(5.2.11), we see that as long as ωi is positive, so that ζi < ξi , γ̄ (λ) approaches −∞ as λ
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74 Chapter 5. Algorithms for the MAEC Problem

tends to −1/ξi from above, so if its derivative is negative at 0, there will be a maximizer
between 0 and −1/ξi . On the other hand, if ωi is zero, then γ̄ ′(λ) =−k/(1+ λ), so γ̄ is
maximized over feasible λ at −ui . For now, assume the latter case does not arise, so that
we are concerned with the roots of the quadratic.

Suppose first c < 0, so that ωi > k and we wish to increase λ. Then if a is positive,
ac < 0, so the quadratic has one root of each sign, and we want to increase λ to

λ∗ =
c

b −
+

b 2− ac
(5.2.12)

(we have chosen this form to avoid cancellation in the expression (b +
+

b 2− ac )/a). If a
is zero, we have a linear equation, with root c/(2b ), which is again given by (5.2.12).

Now assume c > 0, so that ωi < k and we want to decrease λ. If −b ≤ +ac , then
the quadratic has either no roots or a repeated root, so the quadratic is nonpositive for all
negative λ, and we use

λ∗ =−ui . (5.2.13)

On the other hand, if −b >
+

ac , then there are two negative roots, so we set λ to the
larger of these, if feasible, or to

λ∗ =max
)
−ui ,

c
b −
+

b 2− ac

*
. (5.2.14)

Finally note that, if ωi = 0, then c > 0 and −b = ζi =
+
ζ 2

i =
+

ac , so that λ∗ is
correctly set by (5.2.13) in this case also.

We remark that exactly the same quadratic arises if we set ωi (u+) to k, from (5.2.10).
Again, this is not surprising in view of the formula for the directional derivative in the
direction di .

We are now ready to state our algorithms formally. As with the minimum-volume
problem, we distinguish a Frank–Wolfe/Fedorov–Wynn algorithm that only considers
positive λ, and a Wolfe–Atwood algorithm that also allows negative λ. Their names are
appended by “C” to indicate that these are for the ellipsoidal cylinder case.

ALGORITHM 5.1.
(FWC Algorithm)

Step 0. Choose u feasible for (D) and ε> 0. Compute ω =ω(u) and (scaled) Cholesky
factorizations of X U X T , ZU ZT , and K(u).
Step 1. Given the current iterate u and its associated ω := ω(u), compute ε+ :=
maxh(ωh − k)/k, and let h = i attain the maximum.
If ε+ ≤ ε, STOP: u (with K(u) and E(u) = −(Y U ZT )(ZU ZT )−1) is ε-primal feasible.
Otherwise, go to Step 2.
Step 2. Compute λ∗ from (5.2.12) and update u← (1+λ∗)−1(u +λ∗ei ).
Step 3. Update ω and scaled Cholesky factorizations of X U X T , ZU ZT , and K(u), and
go to Step 1.

ALGORITHM 5.2.
(WAC Algorithm)

Step 0. Choose u feasible for (D) and ε> 0. Compute ω =ω(u) and (scaled) Cholesky
factorizations of X U X T , ZU ZT , and K(u).
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5.3. Global convergence 75

Step 1. Given the current iterate u and its associated ω := ω(u), compute ε+ :=
maxh(ωh − k)/k, with h = i attaining the maximum, and ε− := maxh{(k −ωh)/k :
uh > 0}, with h = j attaining the maximum.
If max{ε+,ε−} ≤ ε, STOP: u (with K(u) and E(u) = −(Y U ZT )(ZU ZT )−1) is ε-
approximately optimal.
Otherwise, if ε+ > ε−, go to Step 2; else go to Step 3.
Step 2. Compute λ∗ from (5.2.12) and update u← (1+λ∗)−1(u +λ∗ei ). Go to Step 4.
Step 3. Compute λ∗ from (5.2.13) or (5.2.14) with j replacing i and update
u← (1+λ∗)−1(u +λ∗e j ). Go to Step 4.
Step 4. Update ω and scaled Cholesky factorizations of X U X T , ZU ZT , and K(u) and
go to Step 1.

At the beginning of this section, we mentioned that after a slight modification, a scaled
factorization of X U X T automatically yields similar factorizations of ZU ZT and K(u).
Indeed, suppose we switch the first k rows and columns of X U X T with its last # rows
and columns. By rearranging (5.2.6), we obtain

X U X T =
#

ZU ZT ZU Y T

Y U ZT Y U Y T

$
=
!

I 0
−E I

"!
ZU ZT 0

0 K

"!
I −ET

0 I

"
,

and hence !
ZU ZT 0

0 K

"
=
!

I 0
E I

"
X U X T

!
I ET

0 I

"
.

Suppose we have a scaled Cholesky factorization of X U X T , which we write as

X U X T =φ−1LLT =φ−1
!

LZ 0
LKZ LK

"!
LZ 0

LKZ LK

"T

;

then from the equation above we obtain
!

ZU ZT 0
0 K

"
=φ−1

!
LZ 0

E LZ + LKZ LK

"!
LZ 0

E LZ + LKZ LK

"T

.

From this we deduce that φ−1LZ LT
Z and φ−1LK LT

K are scaled Cholesky factorizations of
ZU ZT and K (and that LKZ = −E LZ ). Again, we note that, initially and at times of
refactorization, the Cholesky factorization of X U X T is obtained by performing a QR
factorization of U 1/2X T .

5.3 Global convergence
In this section we prove global convergence of the FWC Algorithm and the WAC
Algorithm (with slight modifications). We also discuss complexity bounds.

Let εp denote ε+ for the FWC Algorithm and max{ε+,ε−} for the WAC Algorithm
at the pth iteration. We will assume εp > ε> 0 for all p and seek a contradiction. In fact,
for technical reasons, we decrease ε if necessary to 1, so that

+
1+ ε≥ 1+

ε
3

.

We will show that lndet(K) increases at each iteration by an amount related to ε and
the stepsize λ. However, just as we decreased ε if necessary, we find it convenient to
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76 Chapter 5. Algorithms for the MAEC Problem

analyze a possibly smaller (in absolute value) stepsize than the actual stepsize λp chosen
at the pth iteration. To simplify the exposition, let us assume for now that we are
considering the FWC Algorithm, so that the stepsize is positive.

Let us choose 0< λ′ < 1/k so that, for 0≤ λ≤ λ′,
ln[(1− kλ)(1+ kλ(1−λ)(1+ ε/3))] ≥ kελ/4 (5.3.1)

(which is possible since the derivative of the left-hand side with respect to λ is kε/3 at 0).
We set λ′p :=min{λp ,λ′}. Then, because we do not move past the maximum of γ̄ ,

∆ ḡ p := γ̄ (λp)− γ̄ (0)≥ γ̄ (λ′p )− γ̄ (0). (5.3.2)

Moreover, as we remarked before the statement of the algorithms, ωi moves monotoni-
cally towards k as we move towards λp , so

k ≤ωi (u(λ
′
p )) =

(1+λ′p )ωi

(1+λ′pξi )(1+λ′pζi )
≤
(1+λ′p )ωi

(1+λ′pζi )2
, (5.3.3)

whence

1+λ′pζi ≤
,
(1+λ′p )

ωi

k
=
-
(1+λ′p )(1+ εp )≤ (1+λ′p )

+
1+ εp . (5.3.4)

Combining this with (5.2.11) and (5.3.2), we find

∆ ḡ p ≥−k ln(1+λ′p )+ ln
.
1+ λ′pωi

1+λ′p ζi

/

= ln
.
(1+λ′p )−k

0
1+ kλ′p (1+εp )

1+λ′p ζi

1/

≥ ln
%
(1− kλ′p )

!
1+

kλ′p (1+εp )

(1+λ′p )
+

1+εp

"&

≥ ln
'
(1− kλ′p )

2
1+ kλ′p (1−λ′p )

+
1+ εp

3(

≥ ln
'
(1− kλ′p )

2
1+ kλ′p (1−λ′p )

+
1+ ε

3(

≥ ln[(1− kλ′p )(1+ kλ′p (1−λ′p )(1+ ε/3)]
≥ kελ′p/4,

(5.3.5)

where the last inequality uses (5.3.1).
Since ḡ is bounded above (e.g., by the value of any feasible solution to (P )), we deduce

that
∑

p λ
′
p converges. This implies that the λ′p ’s themselves converge to zero, so that for

all large p they equal the λp ’s, whence
∑

p λp also converges. From this,
∏

p (1+ λp )
converges, since its logarithm is

∑
i ln(1+λp ), which is bounded by

∑
p λp .

Now let ξ p
i and ξ p

max denote the values of ξi and of the largest ξ j at iteration p, and
let h be the maximizing index for iteration p + 1. Then, using (3.1.7), we see that

ξ p+1
max = ξ

p+1
h ≤ (1+λp )ξ

p
h ≤ (1+λp )ξ

p
max,

so that from the previous paragraph, ξ p
max is bounded above for all p, say by Ξ.

Since λp is the optimal stepsize, we have

k =ωi (u(λp)) =
(1+λp )ωi

(1+λpξi )(1+λpζi )
≥
(1+λp )ωi

(1+λpξi )2
,
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5.3. Global convergence 77

so that
1+λpξi ≥

,
(1+λp )

ωi

k
≥
-
(1+λp )(1+ ε)≥ 1+

ε
3

. (5.3.6)

But this yields Ξλp ≥ ε/3, which implies that the λp ’s are bounded away from zero, a
contradiction. We have proved the following.

Theorem 5.7. For any positive ε, the FWC Algorithm terminates in a finite number of
iterations with an ε-primal feasible triple (u,K , E).

Now we consider the WAC Algorithm, which allows decrease and drop steps. For
this, we add a further requirement on λ′: for 0≤ λ≤ λ′,

ln
6
(1+ kλ)

#
1− kλ+

1−λ
.
1− ε

2

/$7
≥ kελ

4
. (5.3.7)

(Again, this is possible since the derivative of the left-hand side with respect to λ is kε/2
at 0.) Increase and add steps in the algorithm are analyzed exactly as before. Suppose we
now consider a decrease step at the pth iteration, so that the stepsize λp is negative. We
let λ′p :=max{λp ,−λ′}. Again, we do not move past the maximum of γ̄ , so that

∆ ḡ p := γ̄ (λp)− γ̄ (0)≥ γ̄ (λ′p )− γ̄ (0). (5.3.8)

As before,ω j moves monotonically (now upwards) towards k as we move towards λp , so

k ≥ω j (u(λ
′
p)) =

(1+λ′p )ω j

(1+λ′pξ j )(1+λ′pζ j )
≥
(1+λ′p )ω j

(1+λ′pζ j )2
, (5.3.9)

whence

1+λ′pζ j ≥
8
(1+λ′p )

ω j

k
=
-
(1+λ′p )(1− εp ). (5.3.10)

Combining this with (5.2.11) and (5.3.8), we find, in parallel with (5.3.5),

∆ ḡ p ≥−k ln(1+λ′p )+ ln
.
1+ λ′pω j

1+λ′pζ j

/

= ln
.
(1+λ′p )−k

0
1+

kλ′p (1−εp )
1+λ′pζ j

1/

≥ ln
%
(1− kλ′p )

!
1+

kλ′p (1−εp )+
(1+λ′p )(1−εp )

"&

= ln
%
(1− kλ′p )

!
1+

kλ′p+
1+λ′p

+
1− εp

"&

≥ ln
%
(1− kλ′p )

!
1+ kλ′p+

1+λ′p

+
1− ε

"&

≥ ln
%
(1− kλ′p )

!
1+

kλ′p+
1+λ′p

9
1− ε

2

:"&

≥ kε|λ′p |/4,

(5.3.11)

where the last inequality uses (5.3.7), since 0 ≤ |λ′p | = −λ′p ≤ λ′. We cannot guarantee
a particular increase at drop steps, since the decrease of uj is truncated at such steps, but
certainly ∆ ḡ p ≥ 0 for a drop iteration.
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78 Chapter 5. Algorithms for the MAEC Problem

We conclude that, since the increase in ḡ is bounded,
∑

P |λ′p | converges, where P
indexes the add, increase, and decrease iterations. As before, this implies that

∑
P |λp |

converges, and hence for any γ ≥ 1, so does
∑

P γ |λp |. Thus, as above, we deduce that∏
P (1+ γ |λp |) converges. We want to bound all ξ p

max’s to obtain a contradiction. For
add and increase iterations, (3.1.7) shows as above that ξ p

max increases at most by a factor
1+λp , hence at most by a factor 1+ γλp . For a decrease or drop iteration, (3.1.7) shows
(using the Cauchy–Schwarz inequality) that ξ p

max increases at most by a factor

(1+λp )

;
ξ p

h −
λp

1+λpξ
p

j

ξ p
j ξ

p
h

<=
ξ p

h =
1+λp

1+λpξ
p

j

.

Thus if for a decrease iteration (1+ λp )/(1+ λpξ
p

j ) is at most 1+ γ |λp |, the increase in
ξmax is covered by the infinite product. We maintain a factorρ by which the multiplicative
increase in ξmax might exceed the product of the 1+γ |λp |)’s for add, increase, and decrease
iterations so far. To keep ρ small, we also decrease it as much as possible at add, increase,
and decrease iterations. If ρ ever exceeds γ , we reject the decrease or drop iteration and
instead perform an increase or add step, terminating if necessary. Hence we have the
following

Modification to the WAC Algorithm
Initialize ρ := 1. At each decrease iteration p, multiply ρ by (1+ λp)/[(1+ λpξ

p
j )(1+

γ |λp |)]. At each drop iteration p, multiply ρ by (1+ λp )/(1+ λpξ
p

j ). At each add or
increase iteration, multiply ρ by (1+ λp )/(1+ γλp ). If the resulting ρ at any iteration
exceeds γ , reject the decrease or drop step. If ε+ ≤ ε, stop; otherwise perform an increase
or add step.

We choose γ large (in our computational experiments, 1,000) to discourage the
intrusion of this modification. In any case, the algorithm thus modified generates iterates
with all ξ p

max bounded by the infinite product times γ , say Ξ. As above, this implies that
every add or increase iteration has λp ≥ ε/(3Ξ). Suppose the pth iteration is a decrease
iteration. Then, because we have an optimal stepsize, we find

k =ω j (u(λp)) =
(1+λp )ω j

(1+λpξ j )(1+λpζ j )
≤
(1+λp )ω j

(1+λpξ j )2
,

so that

1+λpξ j ≤
8
(1+λp )

ω j

k
≤
-
(1+λp )(1− ε)≤ 1− ε

2
. (5.3.12)

This gives 1−|λp |Ξ≤ 1−ε/2, so that |λp |≥ ε/(2Ξ). Hence all absolute values of stepsizes
for add, increase, and decrease iterations are bounded below, contradicting the conclusion
above that the sum converges.

Note that, if the modification above is ever invoked to forbid decrease and drop steps,
we might terminate because ε+ drops below ε; otherwise, both ε+ and ε− must drop
below ε. We have therefore proved the following.
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5.4. Local convergence 79

Theorem 5.8. For any positive ε, the WAC Algorithm modified as above terminates in
a finite number of iterations with an ε-primal feasible triple (u,K , E). If the modification
is never invoked to forbid decrease or drop steps, then it terminates in a finite number of
iterations with an ε-approximately optimal triple (u,K , E).

The results above prove global convergence, but do not provide a complexity bound
on the number of iterations or arithmetic operations required to achieve a certain
accuracy. Indeed, it is hard to obtain such a bound, because there is no easy way to bound
the λp ’s, and hence the increase in ξ p

max’s, for the initial iterations where the stepsizes
exceed λ′. If we further assume that ξ p

max is bounded for all p, say by Ξ, then it is possible
to prove a bound of the form C1+C2/ε to obtain an ε-primal feasible or ε-approximately
optimal solution, using methods like those for the MVEE case. Here C1 and C2 are
constants depending on m, n, k, and Ξ.

5.4 Local convergence
As with the MVEE problem, our aim here is to establish local linear convergence of the
algorithm with away steps, but now we need to make strong assumptions to ensure this.
Once again the analysis relies on a perturbed problem. We consider

minE∈Rk×#,H ′∈Sk −lndet(H ′)
(P ′(κ)) (yi + E zi )T H ′(yi + E zi )≤ k +κi , i = 1, . . . , m. (5.4.1)

Like (P ′), this problem is nonconvex in (E , H ′), but is equivalent by exactly the same
argument as before to the convex problem

minH∈Sn −lndet(HY Y )
(P (κ)) xT

i H xi ≤ k +κi , i = 1, . . . , m,
H $ 0.

(5.4.2)

We need to work with (P ′(κ)) because it is in the form of a standard nonlinear program-
ming problem and so standard perturbation results apply, whereas (P (κ)) has an extra
positive semidefiniteness constraint.

Suppose we have a triple (u,K , E) that is δ-approximately optimal. We then set

κi := κu
i :=

>
δk if ui = 0,
(yi + E zi )T K−1(yi + E zi )− k otherwise,

for i = 1, . . . , m. Note that each component of κ is at most δk in absolute value, and that

uTκu =
∑

i :ui>0
uiκ

u
i =

∑
i :ui>0

ui (ωi (u)− k) = uTω(u)− keT u = k − k = 0, (5.4.3)

using (4.3.1). We observe that it is necessary to have a δ-approximately optimal solution
for this equation to hold; a δ-primal feasible u will not suffice.

We now define H ′(u) := K−1 and

H (u) =
!

H ′(u) H ′(u)E
ET H ′(u) ET H ′(u)E

"
.

Then by definition, (E , H ′(u)) is feasible in (P ′(κu)) and H (u) is feasible in (P (κu)).
Indeed, we have
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80 Chapter 5. Algorithms for the MAEC Problem

Proposition 5.9. (E , H ′(u)) is optimal in (P ′(κu )) with Karush–Kuhn–Tucker multipliers
u and H (u) is optimal in (P (κu )).

Proof. We have H ′(u)−1 = K =
∑

i ui (yi + E zi )(yi + E zi )T and E ZU ZT = −Y U ZT .
Hence the first two Karush–John conditions for (P ′(κu )), (4.2.9) and (4.2.10), hold at
(E , H ′(u)) with τ = 1. Moreover, the third condition, (4.2.11), complementarity, holds
by the definitions of κu and H ′(u). Then optimality holds as in the unperturbed case (see
Corollary 4.7).

We next bound how far (u,K , E) is from optimality, i.e., how far ḡ (u) is from
the optimal value ḡ ∗ of (D). For this we again need the relationship between (P ′(κ))
and (P (κ)), but we also need to make a strong assumption on (P ′) in order to apply
perturbation results. We suppose that the strong second-order sufficient conditions hold
at an optimal solution (E∗, H ′∗) to (P ′)with associated Karush–Kuhn–Tucker multipliers
u∗. These comprise the second-order sufficient conditions, linear independence of the
active constraint gradients, and strict complementarity—see, e.g., [28, 60]. Under this
assumption, there are neighborhoods N1 of 0 and N2 of (E∗, H ′∗, u∗), and a continuously
differentiable function from N1 to N2, giving the unique Karush–Kuhn–Tucker triple
(E(κ), H ′(κ), u(κ)) of (P ′(κ)) in N2 (with (E(0), H ′(0), u(0)) = (E∗, H ′∗, u∗)). Moreover,
the associated objective function φ(κ) of this solution (called the value function) is also
continuously differentiable, and its derivative at 0 is φ′(0) =−u∗ (Theorem 6 of [28]).

Proposition 5.10. Under the strong second-order sufficient conditions, there is a constant M
so that, for every sufficiently small positive δ, every δ-approximately optimal (u,K , E) satisfies

ḡ ∗ − ḡ (u)≤Mδ2. (5.4.4)

Proof. Since (P (κ)) is equivalent to (P ′(κ)), φ is also the value function of the former.
Moreover, because (P (κ)) is convex, so is the function φ, and since it is continuously
differentiable in a neighborhood of 0, −u∗ is also a subgradient of φ at 0, from which

ḡ (u) =φ(κu )≥φ(0)+ (−u∗)Tκu

= ḡ ∗ − (u∗ − u)Tκu

≥ ḡ ∗ − ‖u − u∗‖‖κu‖.
By definition, ‖κu‖ ≤+mnδ.

Now let us shrink the neighborhood N1 if necessary so that, for κ ∈ N1, linear
independence of the active constraint gradients and strict complementarity hold at
(E(κ), H ′(κ), u(κ)). Suppose δ is sufficiently small that κu lies in N1. Then (E , H ′)
must be (E(κu ), H ′(κu)). Indeed, if not, there would be two different optimal solutions
of (P ′(κu)) and hence two different solutions H and H (κu ) of P (κu )). But since the
latter problem is convex, any convex combination of these is also an optimal solution,
so there are distinct optimal solutions arbitrarily close to H (κu ). These give distinct
optimal solutions to (P ′(κu)) arbitrarily close to (E(κu), H ′(κu)). Because of strict
complementarity and linear independence of active constraint gradients, the associated
multipliers must be arbitrarily close to u(κu). But this contradicts the uniqueness of
Karush–Kuhn–Tucker triples in the neighborhood N2. It now follows again from linear
independence and strict complementarity that u = u(κu).
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5.4. Local convergence 81

Since u(κ) is continuously differentiable in N1, we can find a constant L so that

‖u − u∗‖= ‖u(κu )− u(0)‖ ≤ L‖κu‖,

and hence (5.4.4) holds with M := Lmn2.

For the MVEE problem, inequality (5.4.4) sufficed to obtain linear convergence,
because we had a strong bound on the increase of g at each iteration. Here we need
to make a further assumption: that ξ p

max, the largest component of ξi at the pth iteration,
is uniformly bounded, say by Ξ. In this case, if we choose ρ sufficiently large, the
modification to the WAC algorithm will never be invoked, and so it will converge to
a δ-approximately optimal solution for any positive δ.

We need (5.3.1) and (5.3.7) to hold, not just for a particular ε, but for all sufficiently
small ε, say those at most 1. Let us also assume that

λ≤ ε
36k
<

1
k

. (5.4.5)

Then (5.3.1) holds if

1− kλ+ kλ
.

1+
ε
3

/
− kλ2

.
1+

ε
3

/
− k2λ2

.
1+

ε
3

/
+ k2λ3

.
1+

ε
3

/
≥ exp

%kελ
4

&
.

The left-hand side is at least 1+ kελ/3− 2k2λ2(1+ ε/3) ≥ 1+ kελ/3− (8/3)k2λ2. The
right-hand side is 1+kελ/4+k2λ2(ε2/32+kλε3/192+ · · ·)≤ 1+kελ/4+k2λ2/3. Hence
the left-hand side is at least the right-hand side as long as kελ/12≥ 3k2λ2, but this follows
from (5.4.5).

Now we consider (5.3.7), which holds if

(1+ kλ)
#

1− kλ+
1−λ

.
1− ε

2

/$
≥ exp

%kελ
4

&
.

For λ< 1/2, 1/
+

1−λ≤ 1+λ, so the left-hand side is at least 1+kελ/2−(1−ε/2)(k2λ2+
kλ2+k2λ3)≥ 1+kελ/2−3k2λ2, while as above the right-hand side is at most 1+kελ/4+
k2λ2/3, so (5.4.5) also implies that (5.3.7) holds.

We can now show linear convergence under the strong assumptions we have made. We
choose ε′ ≤ 1 so that every δ-approximately optimal (u, K , E) satisfies (5.4.4) for δ≤ ε′. It
takes a finite number P of iterations for the WAC algorithm to find an ε′-approximately
optimal solution. We next bound the number of iterations required to go from an ε′-
approximately optimal solution to an ε′/2-approximately optimal solution, and from an
ε′/2-approximately optimal solution to an ε′/4-approximately optimal solution, and so
on.

Suppose we have a δ-approximately optimal solution as our current iterate for δ≤ ε′.
From now until we obtain a δ/2-approximately optimal solution, we will have εp > δ/2.
We can choose λ′ := δ/(72k) to ensure that (5.3.1) and (5.3.7) will hold for all 0≤ λ≤ λ′
for ε= δ/2. Then for every add or increase iteration, the analysis in (5.3.5) with ε replaced
by δ/2 yields

∆ ḡ p ≥ kδλ′p/8.

Moreover, λ′ = δ/(72k), and from (5.3.6), λp ≥ δ/(6Ξ). Thus λ′p is at least some constant
multiple of δ, and hence the increase in ḡ is at least some constant multiple of δ2.
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82 Chapter 5. Algorithms for the MAEC Problem

Similarly, for a decrease iteration, the analysis in (5.3.11) yields

∆ ḡ p ≥ kδ|λ′p |/8,

and from (5.3.12), |λp | ≥ δ/(4Ξ). Thus again we have that the decrease in ḡ is at least
some constant multiple of δ2. Finally, the number of drop iterations in this phase of the
algorithm is bounded by m plus the number of add iterations, and we can conclude from
Proposition 5.10 that at most a constant number of iterations are required to go from a δ-
to a δ/2-approximately optimal solution.

Now the number of such phases needed to achieve an ε-approximately optimal
solution is log2(ε

−1), so we have proved the following.

Theorem 5.11. Under the assumptions
(a) the strong second-order sufficient conditions hold at an optimal solution of (P ′);
(b) the quantities ξ p

max are uniformly bounded for all p; and
(c) the modification of the algorithm is never invoked to forbid decrease or drop steps,

the (modified) WAC Algorithm obtains an ε-approximately optimal solution in at most

P +Q log2(ε
−1)

iterations for some data-dependent constants P and Q.

5.5 Rank deficiency
In the last three sections, we have assumed throughout that ZU ZT remains nonsingular,
and our algorithms and analysis have used that fact. Here we will discuss the case where
ZU ZT becomes singular. It turns out that this can only happen at drop iterations, and at
these a serendipitous condition holds: while many direction matrices E are possible after
the iteration, the previous E is always a possibility. This theoretically allows the iterations
to continue, but as we shall see, the algorithm can fail.

Example 5.12. Let us consider Example 5.1 again. Recall that k = 1,

X =
!

2 3 3
0 1 −1

"
.

Suppose we are at u := (0.9;0.1;0), close to the point (1;0;0) of nondifferentiability. Then

X U X T =
!

4.5 0.3
0.3 0.1

"
.

Then E =−3 and K = 4.5− 3(0.3) = 3.6, and so

ω1 = 2(3.6)−12= 10/9> k = 1;
ω2 = (3+(−3)1)(3.6)−1(3+(−3)1) = 0< k = 1,
ω3 = (3+(−3)(−1))(3.6)−1(3+(−3)(−1)) = 10> k = 1.

Suppose that, instead of increasing u3 (since ω3 > k), we choose to decrease u2 (since
ω2 < k). A simple computation shows that the quadratic determining the stepsize has a
repeated root, so we set λ∗ =−u2 and move to u = (1;0;0). At this point,

X U X T =
!

4 0
0 0

"
,
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5.5. Rank deficiency 83

so that ZU ZT = 0 is singular. However, E = −3 still satisfies E ZU ZT = −Y U ZT , so
we will use this. Then K = 4, and so

ω1 = 2(4−1)2= 1= k;
ω2 = (3+(−3)1)4−1(3+(−3)1) = 0< k ,
ω3 = (3+(−3)(−1))4−1(3+(−3)(−1)) = 9> k .

The algorithm then prescribes that we should increase u3 and move in the direction
(−1;0;1). But recall from Example 5.5 that this is a direction of decrease for ḡ and so is
the other direction (−1;1;0) that results in a rank-one update. We could decide to take a
short step in the direction (−1;0;1) to move away from the point of nondifferentiability,
say to (0.9;0;0.1). But then the same problem occurs if we decide to decrease u3;
the computations are almost identical, with the off-diagonal entries of X U X T , and E ,
changing sign.

In this example, k = 1 for simplicity. We have constructed similar examples for k =
2. So far, to obtain cycling, our examples require us to take a nonstandard choice of
component, but it seems quite possible that examples can be found where the standard
rules of the WAC algorithm lead to cycling.

Let us examine further the case of a drop in the rank of ZU ZT . The following two
results are useful.

Proposition 5.13. Let Z = [z1, z2, . . . , zm] ∈ IRr×m and let u ∈ IRm be nonnegative. Then
range(ZU ZT ) = span{zi : ui > 0} and so

rank(ZU ZT ) = dim span({zi : ui > 0}).

Proof. Indeed, it is clear that the range of ZU ZT is included in the span of those zi ’s with
ui positive. But every such zi lies in the range of ZU ZT by Proposition 4.15.

It follows that a drop in the rank of ZU ZT cannot occur in a decrease iteration. It
could occur in an add or an increase iteration if the corresponding τ were 1, so the next
u is a unit vector. But then X U X T and hence K have rank at most one, which is only
possible for k = 1. Since this is a special case that can be dealt with by linear programming
techniques, we ignore it, so that a loss of rank can only occur at drop iterations.

So let the current iterate û be such that K(û) is nonsingular, so that û has at least two
positive components. Suppose ZÛ ZT is nonsingular, and let u := 1

1−ū j
(û− û j e j ), so that

xj is dropped, and suppose ZU ZT is singular. Then 0< û j < 1. There are many solutions
to Y U ZT =−E ZU ZT , but one is particularly easy to find.

Proposition 5.14. Let û and u be as above, and suppose Y Û ZT = −Ê ZÛ ZT . Then we
have

(a) yj + Ê z j = 0;
(b) Y U ZT =−Ê ZU ZT ;
(c) K(u) = 1

1−û j
K(û); and

(d) û j ζ j (û) = 1.
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84 Chapter 5. Algorithms for the MAEC Problem

Proof. First note that û = (1− û j )u + û j e j , so that ZÛ ZT = (1− û j )ZU ZT + û j z j zT
j .

Since ZU ZT is singular, there is a nonzero w with ZU ZT w = 0, and then

0 .= ZÛ ZT w = (1− û j )ZU ZT w + û j z j zT
j w = û j (z

T
j w)zj ,

so that zT
j w is nonzero. Also, wT ZU ZT w = 0, whence U 1/2ZT w = 0, and so

Y U ZT w = 0.
Now we have

û j (yj + Ê z j )z
T
j w = û j y j zT

j w + û j Ê z j zT
j w

= (1− û j )Y U ZT w + û j y j zT
j w

+(1− û j )Ê ZU ZT w + û j Ê z j zT
j w

= Y Û ZT w + Ê ZÛ ZT w = (Y Û ZT + Ê ZÛ ZT )w = 0.

Since û j and zT
j w are nonzero, part (a) follows.

Next,

0= Y Û ZT + Ê ZÛ ZT

= (1− û j )(Y U ZT + Ê ZU ZT )+ û j (yj zT
j + Ê z j zT

j )

= (1− û j )(Y U ZT + Ê ZU ZT )+ û j (yj + Ê z j )z
T
j = (1− û j )(Y UZT + Ê ZU ZT )

by part (a), and so part (b) is proved.
We can now use the same axis matrix for u as for û, so that

K(u) =Y U Y T + Ê ZU Y T

=
1

1− û j
(Y Û Y T + Ê ZÛ Y T − û j (yj y

T
j + Ê z j y

T
j ))

=
1

1− û j
(K(û)− û j (yj + Ê z j )y

T
j ) =

1
1− û j

K(û),

proving (c).
Finally, we find

0= det(ZU ZT ) = (1− û j )
−r det(ZÛ ZT − û j z j zT

j )

= (1− û j )
−r det(ZÛ ZT )(1− û j ζ j (û))

by the rank-one update formula, which shows part (d). Note that in fact, û j ζ j = 1 is
a sufficient condition for dropping xj to lead to rank deficiency, as well as a necessary
condition.

It is possible that many indices j lead to rank deficiency, and then an extension of
the above result shows that all such j can be dropped simultaneously, with analogous
properties.

These propositions give us very useful information about rank deficiency. Part (a)
might seem to imply that losing rank is exceptional, but in fact this occurs whenever zj
does not lie in the span of the remaining zi ’s corresponding to positive û j ’s and so may
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5.6. Computational results 85

take place with a sparse û. If it does occur, part (a) shows that ω j is zero, as observed in
our example, and (b) then indicates that the same E can be used after the drop. Parts (b)
and (c) show that all quantities ωi will be scaled up by 1/(1− û j ) after the drop. Hence
we can detect beforehand whether dropping xj will lead to an ε-approximately optimal
solution for an acceptably small ε.

If not, it may be unwise to proceed with the drop, as it could lead to cycling. In fact,
such a step is proscribed by our modification. Note that, since ξ j = ζ j , (5.2.9) shows that
ξ j approaches infinity as λ approaches −û j from above by (d). So unless we are going to
terminate after the drop, we should choose a different component to adjust.

5.6 Computational results
Here we will give some results of computational experiments performed with the
algorithms of this chapter. We have conducted a number of experiments, but here we
confine ourselves to the same set of 5,000 points in 200-dimensional space as in Section
3.8. Our basic method is the WAC algorithm with Kumar–Yıldırım initialization, which
doesn’t exploit knowledge of the dimension k of y-space, but seems to perform adequately.

If we choose tolerance ε = 10−7 and solve all problems with k increasing from 20 to
200 in increments of 20, we see a number of iterations between 1,464 and 2,870 and times
between 2.2 and 6.7 seconds, generally decreasing with k. In all cases, linear convergence
is apparent, taking hold almost from the first iteration, and the modification to ensure
global convergence was never invoked. If we decrease the tolerance to 10−10, the number
of iterations increases to between 2,117 and 4,209, and the time to between 3.5 and 9.7
seconds, with no slowing of the linear convergence rate.

For k = 200, the algorithm coincides with the WA algorithm for the MVEE problem,
so for ε = 10−7 we see the same 1,514 iterations, but now taking 2.2 seconds. This is
essentially the same as the algorithm for the MVEE problem when the elimination of
points is disabled. For the MAEC problem with k < n, we have no effective technique for
identifying points that can be eliminated; if we try to extend the argument of Harman and
Pronzato [41] in Section 3.6, we find that we can still obtain bounds on the eigenvalues of
M := (HY Y )1/2(H ∗Y Y )

−1(HY Y )1/2, but these do not enable us to boundωi (u) for essential
points xi because of the difference between E and E∗.

Let us focus on the case with k = 100. Then with ε = 10−7, the algorithm took
1,691 iterations and 3.4 seconds, while for ε = 10−10, these increased to 2,374 and 5.0.
For the tighter tolerance, there were no drop, 1,066 decrease, 330 add, and 1,178 increase
iterations—this shows the effectiveness of the Kumar–Yıldırım scheme in choosing a good
set of initial points. Figures 5.1 and 5.2 show the convergence for the looser tolerance,
as in Section 3.8. The first depicts maxωi and min{ω j : uj > 0} after the first 25
iterations, while the second shows the linear convergence of the error ε :=max(max(ωi−
k)/k ,max{(k −ω j )/k : uk > 0}), plotted on a log scale.

Now, as in Section 3.8, we apply some variations to the algorithms and note their
effects. If we use the Khachiyan initialization, we need 6,850 iterations (4,670 drop, 750
decrease, no add, and 1,430 increase) and 12.3 seconds to achieve ε = 10−7. If we use the
FWC algorithm with no away steps, we need 28,935 iterations and 50.9 seconds to reach
the modest tolerance of 10−2, and 281,107 iterations and 493 seconds to reach ε = 10−3

with the Khachiyan initialization. These figures improve to 11,672 and 19.9 (for ε= 10−2)
and 110,523 and 193 (for ε = 10−3) if the Kumar–Yıldırım initialization scheme is used.
We observe again the 10-fold increase to obtain a reduction in ε by a factor of 10. But
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86 Chapter 5. Algorithms for the MAEC Problem
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Figure 5.1. Convergence of maxωi (blue) and min{ω j : uj > 0} (red).
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Figure 5.2. Linear convergence of the error.

note that the WAC algorithm with the latter initialization only needs 546 iterations and
1.2 seconds, or 763 iterations and 1.5 seconds for these relaxed tolerances.

We conclude that the WAC algorithm is highly effective for the MAEC problem, as is
the WA algorithm for the MVEE problem, in spite of its weaker theoretical convergence
properties.

5.7 Notes and references
The algorithms in this chapter, like those of Chapter 3, are based on the Frank–Wolfe
method and its variant with away steps. In the case of the MAEC problem, as related to
Dk -optimal design in statistics, they were independently developed by Wynn [86] with
a fixed stepsize and Fedorov [27] with an optimal stepsize. Atwood [9] pointed out that
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5.7. Notes and references 87

Fedorov’s convergence analysis failed to treat the case where ZU ZT is singular at the
limiting u, and provided a rigorous global convergence proof, which we have adapted
here.

Atwood also introduces away steps in his paper and claims that his convergence proof
carries over, without taking into account that the increase of ξ p

max is not controlled in this
case. Our analysis corrects this by a suitable modification of the WAC algorithm.

Our analysis of local convergence is based on that in Ahipaşaoğlu [2] and Ahipaşaoğlu
and Todd [4], only slightly simplified. These references also provide a global complexity
bound under the strong assumption that ξ p

max is uniformly bounded. Further, they treat
the case of rank deficiency, developing an algorithm whose iterates u may fail to have
X U X T nonsingular while maintaining information allowing the algorithm to proceed,
but the example of cycling here is new.
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Chapter 6

Related Problems and
Algorithms

In this final chapter we discuss three problems related to our main study of minimum-
volume containing ellipsoids or minimum-area containing ellipsoidal cylinders.

First, we consider approaches to finding good approximating ellipsoids when some of
the points may be contaminated with noise. Two possibilities arise: in one, we seek an
ellipsoid that contains a certain fraction of the points, but this is a hard combinatorial
problem. Hence we address an alternative formulation due to Gotoh and Takeda [36],
which roughly requires that the average of the ellipsoidal distances, among those in the
highest (1−β) fraction, be no greater than n. This is related to the notion of conditional
value-at-risk in finance, as the first approach is related to the traditional concept of value-
at-risk. We provide a dual problem and duality and optimality theorems, and discuss the
possibility of efficient first-order methods. We also show that the general problem reduces
to the centered problem as in the usual minimum-volume ellipsoid problem.

Second, we discuss minimum-volume enclosing parallelotopes, as we hinted at in the
opening chapter. Here we do not give algorithms to obtain optimal solutions, but provide
some bounds from simple constructions.

Third, we consider a polar problem: given a bounded polyhedron defined by inequal-
ities, we wish to find a maximum-volume inscribed ellipsoid. Although the centered
problem reduces to the MVEE problem, the general version seems considerably harder.

6.1 Conditional minimum-volume ellipsoids
Suppose we are given m points x1, . . . , xm in IRn satisfying assumption (2.1.2), as in Chapter
2. Associated with a positive definite H ∈ Sn , we have the m quantities pi := xT

i H xi ,
i = 1, . . . , m. When we consider the MVEE problem, all these pi ’s must be at most n. But
suppose some of the points are subject to noise. Then it might be reasonable to allow some
outlying points to be ignored and to consider theβ-minimum-volume ellipsoid (β-MVE)
problem

minH∈Sn ,J⊂{1,...,m} −lndet(H )
xT

i H xi ≤ n for all i ∈ J ,
|J | ≥βm,

where β ∈ (0,1) determines the fraction 1−β of points that can lie outside the ellipsoid
E(H ). Clearly, for β > 1 − 1/m, this problem is equivalent to the MVEE problem.
Note that, for the β-MVE problem, we need to strengthen our assumption above and
suppose that every collection of at least βm points spans IRn . This problem has been
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90 Chapter 6. Related Problems and Algorithms

considered by many statisticians; see, for example, Rousseeuw and Leroy [67]. However,
the combinatorial nature of its constraints causes algorithmic difficulties, and the available
algorithms either use heuristics or branch-and-bound; see, e.g., Agullo [1].

Instead, we will study here the β-conditional minimum-volume ellipsoid
(β-CMVE) problem, defined as

minH∈Sn ,α∈R,z∈Rm
+

f (H ) :=−lndet(H )
(P ) xT

i H xi ≤ α+ zi , i = 1,2, . . . , m,
α+ 1

(1−β)m eT z ≤ n
(6.1.1)

for β ∈ [0,1). This problem was introduced by Gotoh and Takeda [36]. The constraints
above were modeled on those used by Rockafellar and Uryasev [65] in their discussion of
conditional value-at-risk.

To explain these constraints, note first that in any optimal solution, the last constraint
must hold with equality; otherwise, α can be strictly increased, and hence H can be
multiplied by a factor strictly greater than 1, while maintaining feasibility. But this would
improve the objective. Similarly, for any fixed values of the pi := xT

i H xi ’s in an optimal
solution, α and z must be chosen subject to αe+ z ≥ p to minimize α+ eT z/[(1−β)m].
Hence each zi is the nonnegative part of pi −α.

Suppose for now that β is positive, and first that βm is an integer, say k. For
simplicity, assume the pi ’s are in nondecreasing order. If α < pk , we can increase α by
a small amount, say ε, and decrease each zj , j ≥ k, by ε, and maintain feasibility. In so
doing, α+ eT z/[(1−β)m] increases by (1− (m − k + 1)/(m − k))ε < 0. Similarly, if
α > pk , we can decrease α by some ε> 0 while increasing each zj for pj > α by ε. In so
doing, α+ eT z/[(1−β)m] increases by at most (−1+ (m− k)/(m− k))ε = 0. Hence,
without loss of generality, α = pk in an optimal solution. Then zi is zero for i ≤ k and
equal to pi −α for i > k, so that

α+
1

(1−β)m eT z =
∑

j>k (α+ zk )
m− k

=
∑

j>k pk

m− k
,

the average of the values of the pi ’s larger than the β-quantile.
If βm is not an integer, we let k denote the ceiling of βm. Similar reasoning to that

above shows that again α must be pk in an optimal solution. We can then write

α+
1

(1−β)m eT z =
(k −βm)α+

∑
j>k (α+ zk )

(1−β)m =
(k −βm)α+

∑
j>k pk

(1−β)m ,

which we can view as an average of the m−k largest pj ’s together with a fraction k−βm
of the (m − k + 1)st largest. This is a natural way to generalize the average of the pi ’s
larger than the β-quantile when this does not fall on an integer. If 1− 1/m ≤ β < 1,
we obtain a bound on the largest pi ; in other words, all points must lie in E(H ) and the
problem reduces to the MVEE problem. For smaller values of β, this constraint on the
average of the largest values of xT

i H xi clearly relaxes this requirement and hence accounts
for outliers.

Ifβ= 0, a similar argument to that above shows that, without loss of generality, α can
be taken as the smallest xT

i H xi , and then α+
∑

zi/m is just the average of these values,
which can be no greater than n. As shown by Gotoh and Takeda, the problem is then
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6.1. Conditional minimum-volume ellipsoids 91

easily solved via its optimality conditions, and results in

H =
"∑

i xi xT
i

m

#−1

,

the inverse of the sample variance of the points.
In the next subsection, we develop the dual of problem (P ), then we discuss the

generality of just considering the centered version of the problem, and finally we consider
algorithms. The development parallels that of the simpler MVEE problem, so we will be
brief, but the details are easy to fill in.

6.1.1 Duality

Let us write γ for [(1 − β)m]−1. We say (H ,α, z) is feasible in (P ) if it satisfies the
constraints and the objective is finite, so that X U X T is positive definite. We apply
Lagrange multipliers u ∈ IRm

+ and λ ∈ IR+ to the constraints in β-CMVE to obtain

L(H ,α, z, u,λ) :=−lndet(H )+H •X U X T −αeT u − uT z +λ(α+ γ eT z − n)
= [−lndet(H )+H •X U X T ]+ [α(λ− eT u)]+ [zT (λγ e − u)]−λn.

Minimizing the first term with respect to H ∈ Sn gives lndet(X U X T ) + n (using
H = (X U X T )−1) if X U X T is positive definite, and −∞ otherwise; hence we obtain
lndet(X U X T )+ n.

Minimizing the second term with respect to α ∈ R gives 0 (for α= 0, say) if eT u = λ,
and −∞ otherwise, and similarly minimizing the third term over nonnegative z gives 0
(for z = 0) if u ≤ λγ e , and −∞ otherwise.

Thus the Lagrangian dual maxu∈Rm
+ ,λ∈R+

minH∈Sn ,α∈R,z∈Rm
+

L(H ,α, z, u,λ) reduces to

max
0≤u≤γ (eT u)e

{lndet(X U X T )+ n− neT u}.

Just as in Chapter 2, if we replace u by û := µu, where µ≥ 0 and eT u = 1, we find that
the optimal µ is 1, and so we reach the dual problem

max g (u) := lndet(X U X T ),
(D) eT u = 1,

u ≤ γ e ,
u ≥ 0.

Note that this is exactly the dual of the MVEE problem with the addition of an upper
bound of γ on each component of u. Ifβ≥ 1−1/m, γ is at least 1 and these upper bounds
are superfluous, while if β = 0, γ = 1/m and the only feasible solution is u = e/m. We
say u is feasible in (D) if it satisfies the constraints and yields a finite objective value, so
that X U X T is positive definite. We remark that this problem might also arise in optimal
statistical design, if it is desired to restrict the proportion of observations made at any
individual data point xi .

We now give a short proof of weak duality to highlight the conditions for optimality.

Proposition 6.1. If (H ,α, z) and u are feasible in (P ) and (D), respectively, then

f (H )≥ g (u).
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92 Chapter 6. Related Problems and Algorithms

Proof. The argument is very close to that for Proposition 2.1. First,

H •X U X T =
∑

i ui xT
i H xi ≤

∑
i ui (α+ zi )

= αeT u + uT z ≤ α+ γ eT z ≤ n.

The rest of the proof proceeds exactly as in Chapter 2, using the eigenvalues of
HX U X T .

Note that strong duality holds iff H = (X U X T )−1, ui positive implies xT
i H xi =

α+ zi , ui < γ implies zi = 0, and α+ γ eT z = n.
Our next task is to show that strong duality does indeed hold.

Theorem 6.2. Under assumption (2.1.2), (P ) has an optimal solution (H ∗,α∗, z∗) with H ∗
unique, (D) has an optimal solution u∗ with X U ∗X T unique, and f∗ := f (H ∗,α∗, z∗) =
g (u∗) =: g ∗.

Proof. Consider (P ). We have shown above that, if it has an optimal solution, it has
one with α nonnegative. Hence we can add the redundant constraint α ≥ −1. With z
nonnegative and the last constraint, this implies that the set of feasible (α, z)’s is compact.
Also, α+zi is bounded above, say by K , for all feasible solutions. Thus all the points xi lie
in the ellipsoid E((n/K)H ). Next, as in Chapter 2, we see that we can add the redundant
constraint−lndet(H )≤−lndet(εI ) for some positive ε so that H = εI is feasible for some
α, z. Then the objective function is continuous on this modified feasible region.

By (2.1.2), for each j , µe j is a convex combination of the points±xi for some positive
µ. Hence we obtain a uniform bound on the spectral norm of all feasible H exactly as in
the proof of Theorem 2.2. Now we can again apply the Weierstrass theorem to conclude
that there is an optimal solution for (P ). Moreover, the strict convexity of−lndet implies
that H ∗ must be unique.

The objective and constraints are differentiable in the neighborhood of the optimal
solution, so we can use the Karush–John optimality conditions at (H ∗,α∗, z∗). These
imply that there are nonnegative multipliers, not all zero, τ for the objective function, ui
for the ith constraint in (P ) for i = 1, . . . , m, and λ for the last constraint, with

−τ(H ∗)−1+
∑

i ui xi xT
i = 0,

λ− eT u = 0,
λγ e − u ≥ 0,

ui (xT
i H ∗xi −α∗ − z∗i ) = 0, i = 1, . . . , m,

λ(α∗+ γ eT z∗ − n) = 0,
z∗i (λγ − ui ) = 0, i = 1, . . . .m.

(6.1.2)

Note that we have ignored the redundant constraints we added, since they are not tight
and the associated multipliers are zero. Also, we have eliminated the multipliers for the
nonnegativity constraints on z, instead using the inequalities and the last equations in
(6.1.2).

Taking the trace product of the first equation with H ∗ gives−τn+
∑

i ui H ∗ • xi xT
i =

0, so we obtain, using the remaining conditions,

τn =
∑

i
ui xT

i H ∗xi

= α∗eT u + uT z∗
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6.1. Conditional minimum-volume ellipsoids 93

= α∗λ+ uT z∗

= λ(α∗+ γ eT z∗)
= λn.

First, if τ = 0, (u,λ) must be nonzero, so some ui must be positive, and so λ must be
positive, contradicting the equation above. Hence τ must be positive, and by scaling, we
can assume that it is 1. Then the equation above gives λ = 1, and then we see that u is
feasible in (D). Moreover, the conditions above imply that equality holds in the weak
duality inequality we derived above, so that u is optimal in (D). Since the feasible region
of (D) is convex and lndet is concave, X U X T must be unique.

6.1.2 Relaxing the centered restriction

Above we have assumed that we are seeking a centered ellipsoid related to the points xi
in IRn . However, we may be more interested, as were Gotoh and Takeda, in finding a
possibly noncentered ellipsoid. Suppose we have m points yi in IRd whose affine hull is
IRd . As in Section 2.3, we define xi := (yi ; 1) ∈ IRn for i = 1, . . . , m, where n := d + 1.
Then the xi ’s span IRn . If we form matrices Y and X from these vectors, we have

X =
%

Y
eT

&
.

We would like to choose HY Y and ȳ so that “E(HY Y , ȳ) captures the average of the
farthest (1 − β)m points yi ” or more precisely, to minimize −lndet(HY Y ) subject to
(yi−ȳ)T HY Y (yi−ȳ)≤ α+zi for all i andα+γ eT z ≤ d for some α and nonnegative z. The
following result shows how these quantities can be obtained by solving the corresponding
centered problem for the xi ’s.

Theorem 6.3. With the assumption and notation above, suppose that u∗ and (H ∗,α∗, z∗)
are optimal solutions to (D) and (P ), respectively (defined using the points xi , i = 1, . . . , m),
so that H ∗ = (X U ∗X T )−1. Then the unique solution to the noncentered problem above for
the yi ’s is H ∗Y Y equal to the leading d × d submatrix of H ∗ and ȳ = Yu∗.

Proof. First consider an arbitrary feasible solution (HY Y , ȳ) to the noncentered problem.
Then, for some α and nonnegative z, we have

(yi − ȳ)T HY Y (yi − ȳ)≤ α+ zi , i = 1, . . . , m,

α+ γ eT z ≤ d ,

or
'

yi
1

(T % I 0
−ŷT 1

&%
HY Y 0

0 1

&%
I −ŷ
0 1

&'
yi
1

(
≤ (α+ 1)+ zi , i = 1, . . . , m,

(α+ 1)+ γ eT z ≤ n.

This shows (H ,α+ 1, z) is feasible for (P ), where

H :=
%

I 0
−ŷT 1

&%
HY Y 0

0 1

&%
I −ŷ
0 1

&

=
%

HY Y −HY Y ŷ
−(HY Y ŷ)T 1+ ŷT HY Y ŷ

&
.

Note that det H = det HY Y , so that −lndet(HY Y ) =−lndet(H )≥−lndet(H ∗).
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94 Chapter 6. Related Problems and Algorithms

Now suppose that (H ∗,α∗, z∗) and u∗ are optimal for (P ) and (D), respectively. Then
we know from strong duality that

H ∗ = (X U ∗X T )−1

=
"%

Y
eT

&
U ∗

%
Y
eT

&T#−1

=
)*

Y U ∗Y T ȳ
ȳT 1

+,−1

=
'%

I ȳ
0 1

&%
Y U ∗Y T − ȳ ȳT 0

0 1

&%
I 0

ȳT 1

&(−1

=
%

I 0
−ȳT 1

&%
(Y U ∗Y T − ȳ ȳT )−1 0

0 1

&%
I −ȳ
0 1

&
,

where ȳ := Yu∗. Let us set H ∗Y Y := (Y U ∗Y T − ȳ ȳT )−1; we note that this is the leading
d × d principal submatrix of H ∗ and that det H ∗ = det H ∗Y Y so that −lndet(H ∗Y Y ) =
−lndet(H ∗).

Now (H ∗,α∗, z∗) is feasible in (P ), so

'
yi
1

(T % I 0
−ȳT 1

&%
H ∗Y Y 0

0 1

&%
I −ȳ
0 1

&'
yi
1

(
≤ α∗+ z∗i , i = 1, . . . , m,

α∗+ γ eT z∗ ≤ n,

or

(yi − ȳ)T H ∗Y Y (yi − ȳ)≤ (α∗ − 1)+ z∗i , i = 1, . . . , m,

(α∗ − 1)+ γ eT z∗ ≤ d ,

so that (H ∗Y Y , ȳ), with α∗ − 1 and z∗, satisfies the constraints above. Hence these values
are optimal, and uniqueness follows from the same arguments, using the fact that H ∗, and
hence the last column of its inverse, are unique.

6.1.3 Algorithms

Gotoh and Takeda [36] developed an interior-point method for the β-CMVE problem,
actually a more general noncentered version where −lndet(Q) is minimized and ‖Q xi −
q‖2 replaces xT

i H xi in the constraints. Their algorithm is based on the dual reduced
Newton method of Sun and Freund [77]. They provide encouraging computational
results for moderately sized problems. Using our reduction to the centered case should
provide a more efficient version of their method.

However, since (D) is a simple modification of the dual of the MVEE problem, it
is tempting to devise a coordinate-ascent-like algorithm, as in Section 3.1. There we
proposed increasing or decreasing a single component of u and then rescaling the result.
Here this leads to problems: our current iterate u will have some components zero, say
for j ∈ J ; some between 0 and γ , say for indices k ∈ K ; and some equal to γ , say for indices
' ∈ L. We would like to be able to increase a component indexed by j ∈ J , increase or
decrease a component indexed by k ∈ K , or decrease a component indexed by ' ∈ L.
After any of these changes, we need to rescale to maintain eT u = 1; but if we scale all the
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6.2. Approximating by parallelotopes 95

indices, those in L will no longer be at the upper bound γ , while if we scale just those in
K , this will not lead to a simple rescaling of the matrix X U X T .

Let us instead view such a method as a Frank–Wolfe algorithm, or the variant with
away steps. Then at each step we would maximize or minimize a first-order Taylor
approximation to the objective over the feasible region, leading to an extreme point.
These have the form of a vector with at most one component between 0 and γ , with
the rest 0 or γ , and it is easy to find the appropriate extreme point after sorting the
components of the gradient vector. However, moving either towards or away from such
an extreme point leads to a high-rank correction to X U X T (which cannot be decomposed
into a low-rank correction followed by a scaling), and hence we cannot find an optimal
stepsize in closed form or cheaply update the objective and its gradient.

Hence a very simple change to the dual problem makes a drastic change to the
efficiency of such a first-order method, and we can therefore only recommend a variant of
the interior-point method for solving theβ-CMVE problem. We will not provide further
details here.

A little work shows that (P ) above can also be written as

minH −lndet(H )
maxu∈Q (H •X U X T )≤ n,

where Q := {u ∈ IRm : eT u = 1,0 ≤ u ≤ γ e}. This follows a standard way of viewing
conditional value-at-risk as a coherent risk measure (see Artzner et al. [7]). Gotoh and
Takeda (private communication) note that the problem above gives a generalization of the
minimum-volume enclosing ellipsoid problem for any set Q of probability distributions,
with dual problem

max{lndet(X U X T ) : u ∈Q}.
However, Frank–Wolfe-type methods will be inefficient for any such problem unless Q
is the set of all probability distributions.

6.2 Approximating by parallelotopes
We next turn to approximating the convex hull of m points xi in IRn by a small enclosing
parallelotope, the affine image of a hypercube or box. Equivalently, we wish to find a
nonsingular affine transformation, x → Ax + a, so that the image of each xi lies in the
unit hypercube, and so that the inverse image of this hypercube is small. If we measure
size as with ellipsoids by the volume, we are led to the problem

minA∈Rn×n ,detA>0,a∈Rn − lndetA,
(P ) ‖Axi + a‖∞ ≤ 1, i = 1, . . . , m.

This is because the inverse transformation, z → A−1(z − a), multiplies volumes by
|det A−1|, and we can assume the determinant is positive without loss of generality since
the signs of the first row of A and of a can be switched without affecting feasibility. We
can also consider the centered variant, where we wish to enclose the points in the linear
image of a hypercube centered at the origin—then we merely set a to zero in the above
problem. At first sight, this problem seems very similar to the MVEE problem and we
might hope that similar duality results, optimality conditions, and efficient algorithms
could be developed. However, there is a fundamental difference: on the set of possibly
nonsymmetric matrices with positive determinant, the function A → − lndetA is not
convex. This is easily seen by considering
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96 Chapter 6. Related Problems and Algorithms

A1 :=
%

1 −1
1 1

&
, A2 :=

%
1 1
−1 1

&
, and

1
2

A1+
1
2

A2,

which have determinants 2, 2, and 1, respectively. Thus we give up our hope of
obtaining optimal parallelotopes, and instead develop efficient algorithms to obtain good
approximations. We measure the quality of approximation by the ratio of circumscribed
and inscribed parallelotopes, as we did with ellipsoids. However, our bounds are far from
optimal: see the “Notes and references” section.

Let us start with the centered case, where each xi represents the pair of points±xi . We
let X be the matrix with columns xi , and X be the convex hull of ±xi , i = 1, . . . , m. We
can then apply the BH Algorithm (see Section 3.2) to find n points zj among the xi ’s so
that the convex hull of±zj , j = 1, . . . , n, has volume at least 1/n! times that of the convex
hull of X. Note that the former set is a crosspolytope, and is the union of 2n simplices
with vertices the origin and one of zj and −zj for each j ; each of these simplices has the
same volume, |det Z |/n!, where Z is the matrix with columns zj .

Let us choose a tolerance ε ∈ (0,1]. We now generate a sequence of nonsingular n×n
submatrices of X , Zk , k = 0,1, . . . ,K , with Z0 := Z , as follows. Given Zk−1, we look for
the largest entry in absolute value of Z−1

k−1X . If this is no larger than 1+ε in absolute value,
we terminate. Otherwise, if it occurs in row i and column j , we replace the ith column
of Zk−1 by xj to obtain Zk . We note that the absolute value of the determinant of Zk is at
least 1+ ε times that of Zk−1. Analogously, the simplex with vertices the origin and the
columns of Zk , and the corresponding crosspolytope, have volumes that have increased
by at least this factor. Since the initial volume is at least 1/n! times that of X, the algorithm
terminates within ln n!/ ln(1+ε)≤ n ln n/(ε ln2) steps, each requiring O(nm) arithmetic
operations.

Geometrically, at each iteration the columns of Z−1
k−1X are the points xi after the linear

transformation represented by Z−1
k−1. The current simplex is transformed into the convex

hull of the origin and the canonical basis. The condition for continuing the algorithm
is that there is a transformed point with a component, say the ith, greater than 1 + ε
in absolute value, and it is clear that then replacing the ith unit vector with this point
will increase the volume of the simplex by at least this factor. If there is no such point,
then the transformed set X lies in the hypercube of side 2(1+ ε) centered at the origin.
Moreover, the standard crosspolytope, the convex hull of plus or minus the canonical basis
vectors, lies within the transformed set X, and hence so does the inscribed hypercube of
side 2/n. We have thus found two concentric hypercubes, of sides 2(1+ε) and 2/n, which
circumscribe and inscribe the transformed set X, and transforming these back yields the
desired parallelotopes. We have proved

Proposition 6.4. The algorithm described above for a symmetric X⊆ IRn finds a symmetric
parallelotope P such that

1
(1+ ε)n

P ⊆X⊆ P

within O
-

n ln n
ε

.
iterations, each requiring O(nm) arithmetic operations.

Notice that the estimate above dominates the operations required by the BH Algo-
rithm.

The method above was inspired by an algorithm of Applegate and Kannan [6]. They
instead use a method of Lenstra [58] to find a simplex inscribed in X with vertices drawn
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6.3. Maximum-volume ellipsoids inscribed in a polyhedron 97

from the columns of X with volume at least half that of the largest such simplex, using the
ellipsoid algorithm, with no subsequent iterations. We use a simpler initialization, and
then take iterations like those of Eaves [23] to find the largest determinant submatrix,
with a relaxed criterion so that we can bound the number of steps.

We next consider the asymmetric case. If we apply the BH Algorithm, we obtain
a polytope with at most 2n points, but since there may be repetition among the z j ’s
and the z j ’s, it is not easy to extract a large simplex. Instead, we start by lifting the
polytope to a higher dimension as in Section 2.3. Let us therefore change notation, as
we did there, to consider a set of m points yi in IRd and their convex hull Y. We seek
concentric parallelotopes that inscribe and circumscribe Y as above. We again define Y as
the d×m matrix whose columns are the yi ’s, and then set xi := (yi ; 1) ∈ IRn , i = 1, . . . , m,
where n := d + 1. We define X and X as above, so that

X =
%

Y
eT

&
.

We now apply the BH Algorithm and the pivoting iterations above to find a submatrix
Z (= ZK ) of X so that all entries of Z−1X are at most 1+ ε in absolute value. Let the
columns of Z be (wi ; 1), i = 0, . . . , d , where the wi ’s are columns of Y , and set W :=
[w1−w0, . . . , wd −w0]. Note that the absolute value of the determinant of W is the same
as that of Z , and our condition on Z implies that replacing any column by one from X
cannot increase this quantity by a factor of more than 1+ε. Hence replacing any column
of W by some yi−w0 cannot increase the absolute value of its determinant by more than
this factor.

Consider the affine transformation y →W −1(y − w0) of IRd . This takes the simplex
with vertices wi , i = 0, . . . , m, into the standard simplex with vertices the origin and
the canonical basis vectors. Moreover, the condition on W implies that all yi ’s, after
transformation, lie in the hypercube of side 2(1+ ε) centered at the origin. Finally, the
hypercube of side 1/d centered at the vector with all components 1/(2d ) is inscribed in the
simplex, and hence in Y. Hence the cube of side 2(1+ε)+1/d centered at the same point
contains Y. Transforming these two hypercubes back gives the two desired concentric
parallelotopes inscribing and circumscribing Y. We have proved the following.

Proposition 6.5. The algorithm described above for a general Y ⊆ IRd finds a parallelotope
P with center p such that

1
2(1+ ε)d + 1

P ⊆Y⊆ P

within O
-

d ln d
ε

.
iterations, each requiring O(d m) arithmetic operations.

(Here we use λP to denote the homothetic scaling of P about its center by λ.) Note
that the scaling factors here, about n and 2d for the symmetric and asymmetric case, are
much larger than those for the ellipsoid case,

,
n and d , respectively.

6.3 Maximum-volume ellipsoids inscribed in a polyhedron
In this final section, we consider ellipsoids that approximate polyhedral sets defined by
linear inequalities, of the form

Z := {z ∈ IRn : yT
i z ≤ bi , i = 1, . . . , m}.

The reason for our somewhat strange notation will become apparent shortly.
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98 Chapter 6. Related Problems and Algorithms

Whether we are seeking a minimum-volume circumscribed ellipsoid or a maximum-
volume inscribed ellipsoid, we can assume that Z has a nonempty interior and is bounded.
We will assume that we know a point in the interior, and then by translating this point to
the origin we can assume all right-hand sides are positive. By scaling, we can assume all
these are in fact 1. Thus we have

Z= {z ∈ IRn : yT
i z ≤ 1, i = 1, . . . , m}. (6.3.1)

Note that then the polar of Z is

Z◦ =Y := conv{y1, . . . , ym}.

Further, since we assume that Z is bounded, the origin is in the interior of Z◦, so it is a
convex combination of the yi ’s. We also assume without loss of generality that all the yi ’s
are nonzero, so this is a nontrivial convex combination.

We may seek the minimum-volume ellipsoid containing Z, or the maximum-volume
ellipsoid contained in Z. In each case, we may ask for a centered ellipsoid when Z is
symmetric, so that the constraints come in pairs, ±yT

i z ≤ 1, or a not-necessarily-centered
ellipsoid in the general situation.

Let us consider first the minimum-volume ellipsoid containing Z. Khachiyan and
Todd [50] conjecture that this problem is NP-hard, but we may still be able to obtain
a reasonable approximation. Indeed, the ellipsoid method (see Sections 1.4 and 3.5) is
designed to cut the volume of a circumscribing ellipsoid by a suitable factor at every
iteration. We discuss first the noncentered case. Suppose

Z⊆ E := {z ∈ IRn : (z − z)T H (z − z)≤ 1}.

If for some i , yT
i z ≥ 1− (yT

i H−1yi )1/2/[(1+ ε)n], then for all z ∈Z,

−yT
i (z− z)≥−1+ yT

i z ≥ α(yT
i H−1yi )

1/2

for α≥−1/[(1+ε)n], and then from, e.g., [80], we can replace E by another circumscrib-
ing ellipsoid whose volume is reduced by at least the factor exp(−ε2/[2(1+ ε)2(n+ 1)]).
On the other hand, if we cannot find such an i , then

/
z ∈ IRn : (z − z)T H (z − z)≤ 1

(1+ ε)2n2

0
⊆ Z,

and we have found two ellipsoids, respectively inscribed in and circumscribing Z, which
are homothetic with ratio (1+ ε)n.

Let us assume that Z lies in a ball of radius R. Clearly a ball of radius 1/maxi ‖yi‖ is
contained in Z. Hence the ellipsoid algorithm will terminate with the desired ellipsoids
in at most 2n(n+ 1) ln(R maxi ‖yi‖)(1+ ε)2/ε2 iterations.

The centered case is more favorable, as we suggested in Section 3.5. Here we assume
each yi represents ±yi , so that

Z= {z ∈ IRn : |yT
i z|≤ 1}.

We use centered ellipsoids, so at any iteration we have

Z⊆ E := {z ∈ IRn : zT H z ≤ 1}.
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6.3. Maximum-volume ellipsoids inscribed in a polyhedron 99

If for some i , (yT
i H−1yi )1/2/[(1+ ε)n1/2]≥ 1, then for all z ∈Z,

|yT
i z|≤β(yT

i H−1yi )
1/2

for β ≤ 1/[(1 + ε)n1/2], and then from, e.g., [80], we can replace E by another
circumscribing ellipsoid whose volume is reduced by at least the factor exp(−ε2/[2(1+
ε)2]). On the other hand, if we cannot find such an i , then

/
z ∈ IRn : zT H z ≤ 1

(1+ ε)2n

0
⊆ Z,

and we have found two ellipsoids, respectively inscribed in and circumscribing Z, which
are homothetic with ratio (1+ ε)n1/2. Now, if Z lies in a ball of radius R, the algorithm
will terminate within 2n ln(R maxi ‖yi‖)(1+ ε)2/ε2 iterations. We have saved a factor of
n+ 1 in the complexity.

We next turn to the construction of maximum-volume inscribed ellipsoids. One
motivation for studying this is that such ellipsoids are required at each step in the method
of inscribed ellipsoids of Tarasov, Khachiyan, and Erlikh [78], an optimal (in the oracle
model) algorithm for convex optimization. Let us consider first the centered case. Then

E ⊆Z := {z ∈ IRn : |yT
i z|≤ 1}

iff
E◦ ⊇ Z◦ =: Y= conv{±yi : i = 1, . . . , m}.

Moreover, if E =: {z ∈ IRn : zT H−1z ≤ 1}, then E◦ = {y ∈ IRn : yT H y ≤ 1}, and hence,
up to a constant factor, the volume of E is the reciprocal of that of E◦. Thus finding the
maximum-volume centered ellipsoid inscribed in Z is equivalent to finding the minimum-
volume centered ellipsoid containing Y, that is, to the MVEE problem, which we know
how to solve efficiently.

6.3.1 Formulations of the general case

Now we consider the noncentered case. Unfortunately, this does not easily reduce to the
centered case as with containing ellipsoids. Similarly, although a polarity result like that
above still holds, when E is not centered, the relationship between the volumes of E and
Eo fails to hold. Thus we are faced with a more complicated problem.

Let us consider Z as in (6.3.1). This contains the ellipsoid

E := {z ∈ IRn : (z − v)T H−1(z − v)≤ 1} (6.3.2)

iff the support function of the latter in each direction yi is at most 1, or

yT
i v +

1
yT

i H yi ≤ 1, i = 1, . . . , m.

Subject to these constraints, we wish to maximize the volume of E , which amounts to
minimizing −lndet(H ). Unfortunately, the constraints above are not convex in H .

One way to fix this is by replacing the variable H by B2, for B ∈ Sn , to get

minv∈Rn ,B∈Sn −2 lndet(B)
yT

i v + ‖Byi‖ ≤ 1, i = 1, . . . , m. (6.3.3)
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100 Chapter 6. Related Problems and Algorithms

Alternatively, we can square the constraints above to make them linear in H , obtaining

minv∈Rn ,H∈Sn −lndet(H )
yT

i H yi − (1− yT
i v)2 ≤ 0, i = 1, . . . , m,
yT

i v ≤ 1, i = 1, . . . , m.
(6.3.4)

(The last constraints are necessary to avoid the case that some yT
i v is greater than 1 but

the square of the negative number 1− yT
i v is at least xT

i H xi .) These constraints are now
convex (linear) in H , but are nonconvex in v. We therefore consider replacing the concave
function −(1− yT

i v)2 by a convex approximation.

6.3.2 Successive paraboloid approximations

First, let us approximate this quadratic by its linear approximation around some v̄ ∈ int Z ,
our current approximation to the center of the maximum-volume inscribed ellipsoid:

−(1− yT
i v)2 ≈−(1− yT

i v̄)2+ 2(1− yT
i v̄)yT

i (v − v̄) =−(1− yT
i v̄)(1− yT

i (2v − v̄)).

If we write w for 2v − v̄ , the constraints become

yT
i H yi ≤ (1− yT

i v̄)(1− yT
i w), i = 1, . . . , m.

These constraints automatically imply that 1− yT
i w is nonnegative, since H is positive

definite because of the objective and yT
i v̄ < 1, and hence with v = (v̄+w)/2, 1−yT

i v > 0.
Thus the extra constraints can now be eliminated.

We have therefore replaced the convex problem (6.3.3), or the related nonconvex
problem (6.3.4), with an approximating problem:

minw∈Rn ,H∈Sn −lndet(H )
yT

i H yi ≤ (1− yT
i v̄)(1− yT

i w), i = 1, . . . , m, (6.3.5)

which is convex and in fact has linear constraints. Khachiyan and Todd [50] show that
the original problem can be solved to within an arbitrary accuracy by solving a relatively
small number of problems of this form, at each step replacing the approximate center v̄ by
(v̄+w)/2; indeed, in the application to the method of inscribed ellipsoids, at most 12 such
subproblems need to be solved if n ≤ 106. The authors propose using an interior-point
method to solve each subproblem, exploiting its structure and in particular the linearity
of its constraints. Bearing in mind the similarity of (6.3.5) to the MVEE problem, we
might ask if a simple first-order method based on its dual might be employed.

Let us write αi := 1 − yT
i v̄ > 0 for each i , and A := Diag (α). Then, applying a

nonnegative multiplier ui to each constraint, we obtain the Lagrangian

L(H , w, u) :=−lndet(H )+
∑

i
ui (y

T
i H yi +αi yT

i w −αi ),

leading to the dual problem

max
u≥0
(min

H ,w
[−lndet(H )+H •Y U Y T +wT YAu −αT u]).

As in Section 2.1, the first two terms lead to lndet(Y U Y T ) + n. However, since w ∈ IRn

is unrestricted, we must add the constraint YAu = 0, leading to the problem

max{lndet(Y U Y T )+ n−αT u : YAu = 0, u ≥ 0}.

D
ow

nl
oa

de
d 

07
/1

5/
16

 to
 1

32
.2

39
.1

.2
31

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



6.3. Maximum-volume ellipsoids inscribed in a polyhedron 101

As before, if we replace u with û =: λu, where αT u = 1, we find the optimal value of λ
is n, giving as the dual of (6.3.5)

maxu∈Rm lndet(Y U Y T )
YAu = 0,
αT u = n,

u ≥ 0.

(6.3.6)

This is similar to the dual of the MVEE problem, except for the presence of the factors
αi , which can easily be absorbed by scaling u and the columns of Y , and the unpleasant
appearance of the linear constraints YAu = 0. Unfortunately, the latter precludes the use
of a simple first-order method that will take advantage of low-rank updates to Y U Y T , so
it seems unlikely that interior-point methods can be improved on.

Before we move on to the second technique for approximating the nonconvex
problem, let us describe a geometric interpretation [50] of (6.3.5). Once again we lift the
problem to a higher dimension, but in a different way. Let us embed Z in the hyperplane
Π := {(z;ζ ) ∈ IRn+1 : ζ = 1}, and then consider the cone on this set with vertex at (v̄; 0),
defined to be

K= {(z;ζ ) ∈ IRn+1 : yT
i z ≤ yT

i v̄ + ζ (1− yT
i v̄), i = 1, . . . , m, ζ ≥ 0}.

We next inscribe in this cone a paraboloid tangent to Π at the point (w; 1), of the form

P :=
2
(z;ζ ) ∈ IRn+1 : ζ ≥ 1+

1
4
(z −w)T H−1(z −w)

3
.

Note that

max{(yi ; yT
i v̄ − 1)T (z;ζ ) : (z;ζ ) ∈ P}

= maxz

2
yT

i z +(yT
i v̄ − 1)

'
1+ 1

4 (z −w)T H−1(z −w)
(3

is attained when z = w + 2
1−yT

i v̄ H yi , and then it gives the value

yT
i v̄ − 1+ yT

i w +
1

1− yT
i v̄

yT
i H yi .

This is at most yT
i v̄ exactly when H and w satisfy the constraints of (6.3.5). Thus these

constraints provide the conditions for P to lie inside K.
We measure the size of such a paraboloid by the volume of its intersection with the

hyperplane with ζ = 5/4, which is
45

z;
5
4

6
: (z−w)T H−1(z −w)≤ 1

7
,

with volume related to lndet(H ). Thus maximizing this size, subject to the constraints
that P⊆K, is exactly our problem (6.3.5).

Since a linear approximation overestimates a concave function, any feasible solution
(H , w) to (6.3.5) gives a feasible solution (H , v := (v̄ + w)/2) to (6.3.4), and hence an
inscribed ellipsoid E . But we can do even better. Let us set v = (v̄ + w)/2 and t :=
(v̄ −w)/2. Then

(1− yT
i v̄)(1− yT

i w) = (1− yT
i (v + t ))(1− yT

i (v − t ))
= (1− yT

i v)2− (yT
i t )2,
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102 Chapter 6. Related Problems and Algorithms

and so any feasible solution (H , w) to (6.3.5) gives v satisfying yT
i v < 1 for all i and

yT
i (H + t t T )yi − (1− yT

i v)2 ≤ 0, i = 1, . . . , m,

and so (H + t t T , v) is feasible in (6.3.4), giving a slightly larger inscribed ellipsoid. Of
course, as the iterations progress and w becomes closer to v̄ , t becomes smaller and so
the difference between these two ellipsoids grows smaller. It is clear that K contains not
only P, but also the cone with vertex (v̄; 0) on the set P; thus Z contains the intersection
of this cone with Π. Khachiyan and Todd [50] show that this intersection is exactly the
slightly larger ellipsoid above, but we will not give details here.

6.3.3 Successive polar ellipsoid approximations

We now turn to the second approximation of the concave function −(1− yT
i v)2 in our

problem (6.3.4), now by a strictly convex function. Again, we assume we have some
v̄ ∈ intZ as an estimate of the center. We start with a linear approximation of the concave
function, but then add a quadratic term to get

−(1−yT
i v)2 ≈−(1−yT

i v̄)2+2(1−yT
i v̄)yT

i (v− v̄)+(1−yT
i v̄)2(v− v̄)T H−1(v− v̄).

(6.3.7)
This is a worse approximation than the linear approximation alone, but, as we shall see, it
results in a more tractable approximating problem. Indeed, if we divide the ith constraint
by (1− yT

i v̄)2 > 0 and write

ŷi :=
yi

1− yT
i v̄

, i = 1, . . . , m, (6.3.8)

the constraints become

ŷT
i H ŷi − 1+ 2ŷT

i (v − v̄)+ (v − v̄)T H−1(v − v̄)≤ 0, i = 1, . . . , m. (6.3.9)

These imply that 2ŷT
i (v−v̄)≤ 1, or 2yT

i (v−v̄)≤ 1−yT
i v̄, so that 1−yT

i v ≥ (1−yT
i v̄)/2>

0, and the last constraints are again redundant. Now the constraints above can be written
as

(ŷi +H−1(v − v̄))T H (ŷi +H−1(v − v̄))≤ 1, i = 1, . . . , m,

so that the problem (6.3.4) is approximated by (setting ȳ :=−H−1(v − v̄))

minH∈Sn ,ȳ∈Rn −lndet(H )
(ŷi − ȳ)T H (ŷi − ȳ) ≤ 1, i = 1, . . . , m,

(6.3.10)

a not-necessarily-centered minimum-volume enclosing ellipsoid problem, which we know
how to solve efficiently. (Note the right-hand side of 1 rather than n above—appropriate
changes need to be made to the algorithms.)

Having solved the problem above, we can use its optimal solution (H , ȳ) to construct
a feasible solution (H , v := v̄−H ȳ) to (6.3.4), since our approximating function in (6.3.7)
was an overestimate. But we can do even better. Having obtained H and ȳ, we see that
they satisfy the approximate constraints in (6.3.9), so that

yT
i H yi − (1− yT

i v̄)2+ 2(1− yT
i v̄)yT

i (−H ȳ)+ (1− yT
i v̄)2 ȳT H ȳ ≤ 0, i = 1, . . . , m.

Collecting terms by their degree in yi , we obtain

yT
i (H − v̄ v̄T + 2v̄ ȳT H + ȳT H ȳ v̄ v̄T )yi + 2yT

i (v̄ −H ȳ − ȳT H ȳ v̄)− (1− ȳT H ȳ)≤ 0
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6.3. Maximum-volume ellipsoids inscribed in a polyhedron 103

for i = 1, . . . , m. Now recall that 0 is a convex combination of the yi ’s, and hence, by
scaling the weights of the combination, of the ŷi ’s. Since at least two of these weights
are positive, and the function g (w) := (w − ȳ)T H (w − ȳ) is strictly convex, we see that
ȳT H ȳ < 1. Dividing the constraints above by 1− ȳT H ȳ, completing the square, and
simplifying, we find

yT
i

)
1

1− ȳT H ȳ
H +

1
(1− ȳT H ȳ)2

H ȳ ȳT H
,

yi −
)

1− yT
i

*
v̄ − 1

1− ȳT H ȳ
H ȳ

+,2

≤ 0

for i = 1, . . . , m. Hence

H+ :=
1

1− ȳT H ȳ
H +

1
(1− ȳT H ȳ)2

H ȳȳT H , v+ = v̄ − 1
1− ȳT H ȳ

H ȳ (6.3.11)

satisfy the first set of constraints in (6.3.4). Moreover, (6.3.9) implies that −2ŷT
i H ȳ +

ȳT H ȳ ≤ 1, so that −2yT
i H ȳ ≤ (1− ȳT H ȳ)(1− yT

i v̄), and then simple algebra yields
yT

i v+ ≤ 1. Hence (H+, v+) is feasible in the second set of constraints of (6.3.4) as well
and thus provides a new inscribed ellipsoid for Z. It is easy to check that det H+ = (1−
ȳT H ȳ)−n det H (1 + ȳT H ȳ/(1− ȳT H ȳ)) = (1 − ȳT H ȳ)−n−1 det H , so that we have an
improvement over the simple update to (H , v).

This complicated algebraic development has an elegant geometric interpretation.
Indeed, let us translate the set Z to center it at v̄ , to get

Ẑ := {z − v̄ : z ∈ Z}
= {ẑ : yT

i ẑ ≤ 1− yT
i v̄, i = 1, . . . , m}

= {ẑ : ŷT
i ẑ ≤ 1, i = 1, . . . , m}.

Then we see that Ẑ◦ is the convex hull of the ŷi ’s. Recall that in the centered case,
the search for a maximum-volume inscribed ellipsoid in Z was equivalent to finding the
minimum-volume ellipsoid enclosing the convex hull of the yi ’s. Now we think that v̄ is
a good approximation to the center of the maximum-volume ellipsoid inscribed in Z, but
since we are no longer confined to centered ellipsoids, we can find the minimum-volume
not-necessarily-centered ellipsoid, say E(nH , ȳ ), enclosing Ẑ◦. (We use nH here since,
when we are dealing with polars, a right-hand side of 1 is more convenient.) Then its
polar will be contained in Ẑ.

Now ẑ lies in E◦(nH , ȳ) iff ẑT ȳ +
,

ẑT H−1 ẑ ≤ 1, which holds when ẑT H−1 ẑ ≤
1− 2ẑT ȳ + ẑT ȳ ȳT ẑ (and ẑT ȳ ≤ 1), or ẑT (H−1− ȳ ȳT )ẑ + 2ẑT ȳ ≤ 1 (and ẑT ȳ ≤ 1), or

-
ẑ + H ȳ

1−ȳT H ȳ

.T
(H−1− ȳ ȳT )

-
ẑ + H ȳ

1−ȳT H ȳ

.
≤ 1+ ȳT H ȳ

1−ȳT H ȳ =
1

1−ȳT H ȳ

(and ẑT ȳ ≤ 1). But this quadratic inequality definesE(n(1−ȳT H ȳ)(H−1−ȳ ȳT ),−H ȳ/(1−
ȳT H ȳ)). Using the rank-one formula and translating this back by v̄ gives E(nH−1

+ , v+),
as we obtained algebraically above. Also, any ẑ satisfying the quadratic inequality has

ẑT ȳ ≤
)
− H ȳ

1− ȳT H ȳ

,T

ȳ +
8

ȳT [(1− ȳT H ȳ)(H−1− ȳ ȳT )]−1 ȳ

=− ȳT H ȳ
1− ȳT H ȳ

+
8

ȳT H+ ȳ

=
9

ȳT H ȳ − ȳT H ȳ
1− ȳT H ȳ

≤ 1,
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104 Chapter 6. Related Problems and Algorithms

since as we saw above, ȳT H ȳ < 1. Hence the subsidiary condition in parentheses above
is automatically satisfied.

The algorithm based on this second approximation is now clear. Given an approxi-
mation v̄ to the center of the maximum-volume ellipsoid inscribed in Z, define the ŷi ’s by
(6.3.8) and (approximately) solve (6.3.10). Then replace v̄ with v+ in (6.3.11) and repeat;
the new approximating inscribed ellipsoid is E(nH−1

+ , v+). This algorithm was suggested
in the last section of Khachiyan and Todd [50]. (Note that there is a typo: bk+1 (our v+)
should be bk (our v̄) plus the center of the polar of Ek .) When we go from one outer
iteration to the next, we can use as a warm start the final u vector from the previous
iteration, suitably rescaled so that Ŷ Û Ŷ T remains the same.

The only problem with this algorithm is that there seems to be no good criterion for
termination. We could stop when the improvement in−lndet(H+) is small, but this does
not guarantee that we are close to an optimal solution. A more principled rule would
use a lower bound on the optimal value, and such bounds usually arise from duality. We
therefore work with the convex formulation (6.3.3).

Section A.8 shows that a dual problem to this can be written as

maxu∈Rm ,ξ∈Rm lndet(Y U Y T )
Y ξ = 0,

eT ξ = n,
ξi ≥ ui‖(Y UY T )−1/2yi‖, i = 1, . . . , m,
u ≥ 0.

(6.3.12)

Note the similarity to the dual (6.3.6) of the Khachiyan–Todd approximating problem;
now the complicating constraints are Y ξ = 0 and the linking of the ξ and u variables. We
also observe that this problem—and (6.3.3)—are invariant under a translation of Z by v̄, or
equivalently a replacement of the yi ’s by the ŷi ’s. Indeed, this transformation leads to new
variables (v̂ := v − v̄, B̂ := B in the primal and û := ((1 − yT

i v̄)2ui ), ξ̂ := ((1 − yT
i v̄)ξi )

in the dual) that preserve feasibility and the objective function.
In fact, the derivation of the dual above in Section A.8 (due to Martin Larsson, now at

ETH Zurich) obtains a problem where the linking constraints are equalities rather than
inequalities. To show that inequalities can also be used, we show that weak duality holds.
Indeed, suppose that B , v are feasible in (6.3.3) and u,ξ in (6.3.12). Then, using the primal
and dual constraints and the Cauchy–Schwarz inequality, we obtain

n = eT ξ ≥
∑

i
(yT

i v + ‖Byi‖)ξi

=
∑

i
ξi‖Byi‖

≥
∑

i
ui‖(Y U Y T )−1/2yi‖‖Byi‖

≥
∑

i
ui yT

i (Y U Y T )−1/2Byi

= B •
"∑

i
yi ui yT

i (Y U Y T )−1/2

#

= B • (Y U Y T )1/2 = B1/2(Y U Y T )1/2B1/2 • I .

D
ow

nl
oa

de
d 

07
/1

5/
16

 to
 1

32
.2

39
.1

.2
31

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



6.3. Maximum-volume ellipsoids inscribed in a polyhedron 105

Next, the concavity of lndet shows that lndet(I +M )≤M • I for any M ∈ Sn . Hence

B1/2(Y U Y T )1/2B1/2 • I − n = (B1/2(Y U Y T )1/2B1/2− I ) • I
≥ lndet(B1/2(Y U Y T )1/2B1/2).

Combining these inequalities yields

0≥ lndet(B1/2(Y U Y T )1/2B1/2) = lndet(B)+ lndet(Y U Y T )1/2,

showing that −2 lndet(B) ≥ lndet(Y U Y T ), as desired. (We also see from the string of
inequalities above that equality can only be achieved if ξi = ui‖(Y U Y T )−1/2yi‖ for all i .)
There is no duality gap for these problems because a Slater-type condition holds; see, e.g.,
Theorem 2.165 in Bonnans and Shapiro [16].

The inequality form is helpful in obtaining bounds. Suppose we have (approximately)
solved (6.3.10), obtaining dual variables û. These correspond to variables u := ((1 −
yT

i v̄)−2 ûi ), which we may try to use as part of a feasible solution to (6.3.12). We will also
have a scaled Cholesky factorization of Y U Y T = Ŷ Û Ŷ T , which we can obtain from one
for X̂ Û X̂ T , with

X̂ :=
*

Ŷ
eT

+
,

with e ∈ IRm a vector of 1’s as in Section 2.3. From this we can obtain suitable parts of
Ĥ := (X̂ Û X̂ T )−1 as in (2.3.2) and (2.3.3). Note that we should set H to be 1/n times the
leading n × n submatrix of Ĥ to reflect the scaling used here, and we therefore multiply
û by n to correspond. From this we can find v+ and H+, or at least its log determinant,
which is all we need until termination.

Since we have solved the noncentered MVEE problem inexactly, we need to scale v+
and H+ (or its positive definite square root B+) to ensure they are feasible up to roundoff
error, and then we have a feasible objective value for the primal.

For the dual, we take our rescaled û (so eT û = n), and multiply each component by
the appropriate ‖(Ŷ Û Ŷ T )−1/2 ŷi‖ to get ξ ′. This will not satisfy the equality constraints,
so we perform an oblique projection, replacing ξ ′ by

ξ := ξ ′ − Û Ŷ T (Ŷ Û Ŷ T )−1Ŷ ξ ′.

Note that only nonzero components of ξ ′ are adjusted. If this vector is nonnegative, we
scale it to make it at least û, and then scale both it and û so that eT ξ = n. This then gives
us a feasible solution to (the scaled version of) the dual problem (6.3.12).

Why should we hope that this will provide a reasonable lower bound? We expect
that as the iterations proceed, v will converge to its optimal value, so that v+ − v̄ and
thus ȳ will approach zero. Hence H will be close to (Ŷ Û Ŷ T )−1 and −lndet(H ) close to
lndet(Ŷ Û Ŷ T ). Also, since ȳ is small, each ŷi (Ŷ Û Ŷ T )−1 ŷi for positive ûi will be close to
1, so ξ ′ will be close to û. Finally, Ŷ û = nȳ is small, so we can hope that Ŷ ξ ′ will also
be small and thus ξ will be close to ξ ′. Since the components of û sum to n, those of ξ
will sum to something close to n and little scaling will be needed.

In practice, our very preliminary computational experience indicates that this method
works reasonably well, although it is much slower than solving the MVEE problem. We
generated the columns of the data Y from the rotated Cauchy distribution as in Section
3.8, and then translated the origin to make it less central. With n = 100 and m =
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106 Chapter 6. Related Problems and Algorithms

5,000, and asking for the duality gap to be at most 10−2, the method required 1,254 outer
iterations and a total of 395,375 inner MVEE iterations, ranging from 827 for the first
outer iteration to between 6 and 11 for the last eight, showing the value of the warm start
procedure. The time required was 79 seconds. The first lower bound was obtained at the
251st outer iteration, and a good primal solution (within 2×10−2 of the best lower bound)
was generated at the 431st outer iteration, although it was not known to be good at that
time. Convergence of the primal and dual objective values is shown in Figure 6.1 (starting
at the 251st iteration), where the slow convergence of the lower bound is apparent.

0 200 400 600 800 1000 1200

0

200

400

600

800

Figure 6.1. Convergence of feasible primal (blue) and dual (red) objective values.

For a larger problem with n = 200 and m = 5,000, we needed 2,490 outer iterations
and 517 seconds. The total number of inner MVEE iterations was 1,383,704, ranging
from 1,310 at the first outer iteration to between 4 and 11 for the last eight. The first good
primal objective value was obtained at iteration 444, while the first lower bound was only
generated at the 1,139th outer iteration. With a much smaller problem, for n = 50 and
m = 200, only 542 outer and 109,012 inner iterations and 11 seconds were required. For
this problem we also decreased the duality gap tolerance to 10−3, at a cost of 638 outer
and 153,014 inner iterations and 15 seconds. For all these problems, a good primal feasible
solution was obtained early on, but proving it close to optimal by generating a good lower
bound took much longer. Thus we have a reasonable algorithm for problems of moderate
size and accuracy, but much more work needs to be done to come anywhere close to the
efficiency of our algorithms for the MVEE and MAEC problems.

In addition, let us stress that we have no proof of convergence for this method, in
contrast to the method using approximating paraboloids.

6.4 Notes and references
As noted, the approach of Gotoh and Takeda [36] in Section 6.1 is related to the concept
of conditional value-at-risk used by Rockafellar and Uryasev [65] in a financial setting.
Suppose we have a model of the possible loss to a financial institution as a certain random
variable. We could then try to limit the risk by placing an upper bound on a certain
quantile of this random variable—this is called the value-at-risk, and is widely used by
regulators. However, it has a major drawback: if the threshold is exceeded, there is no
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6.4. Notes and references 107

control on the possible loss. As an alternative, the conditional value-at-risk is the expected
value of the loss conditional on its exceeding a certain quantile, and hence imposing an
upper bound on this does indeed control the amount of catastrophic loss.

It is not clear whether the corresponding notion makes sense as a criterion for
choosing an approximating ellipsoid in the case of outliers. If it is thought that the outliers
are totally meaningless and chaotic points, then it makes more sense to just require that the
ellipsoid contain a certain fraction of the points, as in theβ-MVE problem. On the other
hand, if the outliers are caused by some gross inaccuracies but are based on real points
of a distribution, then limiting the average values of the pi ’s exceeding a certain quantile
is a reasonable criterion. In either case, the tractability of the β-conditional minimum-
volume problem makes it a very attractive model.

We indicated in Section 6.2 that our bounds for approximating parallelotopes were far
from tight. Indeed, finding tight bounds in the symmetric case is strongly related to the
so-called Banach–Mazur distance to the cube, and is of considerable interest in geometric
functional analysis; see, for example, the survey paper of Giannopoulos and Milman
[33], especially Section 2 and item 4 on page 766. Bourgain and Szarek [17] provide a
lower bound of a constant times

,
n ln n for the ratio of circumscribing and inscribed

parallelotopes, and suspect that this is tight. Further, Giannopoulos [32] and Youssef
[88] have proved an upper bound of a constant times n5/6. (Our algorithm only achieves
a ratio close to n.) Youssef’s argument uses a result of Spielman and Srivastava [75], which
is related to the technique of Batson, Spielman, and Srivastava [11] that we discussed in
Section 3.7 in connection to spectral sparsification of graphs. Finally, Bourgain and Szarek
remark that in the noncentral case, a simplex shows that a lower bound of n for the ratio
of circumscribing and inscribed parallelotopes holds, while we attain an upper bound of
about 2n.

Section 6.3 is based on work by Khachiyan and Todd [50], which was motivated by the
method of inscribed ellipsoids for convex optimization due to Tarasov, Khachiyan, and
Erlikh [78]. This is an alternative to the usual ellipsoid method, generating a sequence of
circumscribing polytopes instead of ellipsoids. At each iteration it finds an approximate
maximum-volume inscribed ellipsoid so that an oracle can be called at its center. The
volumes of the circumscribing polytopes shrink on average much faster than those of the
circumscribing ellipsoids in the ellipsoid method, so that fewer oracle calls need to be
made; the price paid is that the subproblems are much harder. The algorithms using
a sequence of interior-point algorithm calls or of minimum-volume ellipsoid calls are
described in [50], but the derivations via algebraic approximations of the nonconvex
constraints are new. The possibility of stopping the second algorithm using feasible
solutions to the dual is also new. Gürtuna [39] obtains a dual very similar to ours in
the more general case of a convex body, giving a semi-infinite programming problem.
Our formulation seems easier to use in the case of a polyhedron, and can exploit the
solution of the minimum-volume ellipsoid subproblem directly. I derived this dual using
second-order cone duality, but this approach gives first a dual involving a nonsymmetric
matrix, which can then be manipulated into the form here. The simpler derivation
given in Section A.8 is due to Martin Larsson when he was a graduate student at Cornell
University; he is now in the Department of Mathematics at ETH Zurich.

It seems fitting to end this book as we began it, with a tribute to Leonid Khachiyan,
whose great insights into the power of geometric reasoning in optimization problems,
and the importance of geometric optimization problems, were an inspiration to me at
several times in my career.
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Appendix A

Background Material

A.1 Notation, inner products, and norms
We use IRm×n and Sn to denote the spaces of real m × n and real symmetric n × n
matrices, respectively. IRn denotes the space of n-dimensional real vectors, always taken
to be columns unless converted to a row vector using a transpose symbol, and ‖ · ‖
denotes the Euclidean norm on vectors. Notation similar to that of MATLAB avoids the
proliferation of transposes when listing the components of a vector; thus (x1; x2; . . . ; xn )
denotes a column vector with the xj ’s as components, while (x1, x2, . . . , xn ) denotes
the corresponding row vector. We also use (x1; x2; . . . ; xn ) to denote the columnwise
concatenation of vectors x1, x2, . . . , xn and similarly (U1; U2; . . . ; Un) for the columnwise
concatenation of matrices with the same numbers of columns. We write e j for the j th
unit vector (0; . . . ; 0;1;0; . . . , 0) ∈ IRn , where the 1 is in the j th position, and write e for a
vector of 1’s, usually in IRm . The !1 norm of the vector x is

∑
j |xj |. Hence the !1-unit

ball, the set of all vectors with !1-norm at most 1, is the convex hull of all plus or minus
unit coordinate vectors.

We use the natural inner product on matrix spaces IRm×n and Sn : U • V denotes
Trace(U T V ). The corresponding norm is called the Frobenius norm and is denoted
‖U‖F := (U •U )1/2. Note that this inner product and norm can be viewed as the usual
vector inner product and norm applied to the vectors (of length mn or n2) obtained by
concatenating the columns (or rows) of the matrices. In particular, if uj is the j th column
of a matrix U with n columns, ‖U‖F = ‖(‖u1‖;‖u2‖; . . . ;‖un‖)‖.

It is clear that the inner product is symmetric since U T V and V T U , being transposes
of each other, have the same trace. It is important to note also that products can be
rearranged in the trace. Suppose U and V are m× n and n×m, respectively. Then

Trace(UV ) =
∑

i

∑
j

ui j v j i = Trace(V U ); (A.1.1)

we use this frequently. A particular case is

H • xxT = Trace(H xxT ) = Trace(xT H x) = xT H x

for H ∈ Sn , x ∈ IRn .
Another matrix norm is the spectral or operator norm: ‖U‖2 :=max{‖U x‖ : ‖x‖= 1}.

It is trivial to see that ‖UV ‖2 ≤ ‖U‖2‖V ‖2: the spectral norm is submultiplicative and,
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110 Appendix A. Background Material

in fact, so is the Frobenius norm. For any x of norm 1, if uT
i is the ith row of U ∈ IRm×n ,

then

‖U x‖= ‖(uT
1 x; uT

2 x; . . . ; uT
m x)‖

≤ ‖(‖u1‖;‖u2‖; . . . ;‖um‖)‖
= ‖U‖F ,

which shows that ‖U‖2 ≤ ‖U‖F . Similarly, if vj is the j th column of V ∈ IRn×k , then

‖UV ‖F = ‖(‖U v1‖;‖U v2‖; . . . ;‖U vk‖)‖
≤ ‖(‖U‖2‖v1‖;‖U‖2‖v2‖; . . . ;‖U‖2‖vk‖)‖
= ‖U‖2‖(‖v1‖;‖v2‖; . . . : ‖vk‖)‖
= ‖U‖2‖V ‖F ≤ ‖U‖F ‖V ‖F ,

so that the Frobenius norm is also submultiplicative.
We use Diag (v) ∈ Sn to denote the diagonal matrix whose diagonal entries are the

components of v ∈ IRn , and diag(U ) to denote the vector whose components are the
diagonal entries of U ∈ IRn×n .

Consider U ∈ IRn×n . Then λ is an eigenvalue, and x is an associated eigenvector, if x
is nonzero and

U x = λx.

It follows that λ is an eigenvalue of U if it is a root of the characteristic equation det(λI −
U ) = 0. The left-hand side is a polynomial of degree n, and it follows that U has n
eigenvalues, counting multiplicity, if we allow eigenvalues, and their associated eigenvectors,
to be complex-valued (the complex field, as opposed to the reals, is algebraically closed).
However, there is a special case, relevant to this monograph, in which n real eigenvalues
and a set of n corresponding orthogonal real eigenvectors exist.

Theorem A.1. If H ∈ Sn , then there are an orthogonal matrix Q and a diagonal matrix Λ
in IRn×n satisfying

H =QΛQT .

If we write Q = [q1, q2, . . . , qn] and Λ= Diag (λ1,λ2, . . . ,λn), then it follows that

H qj =HQej =QΛQT Qej =QΛe j =Q(λ j e j ) = λ j q j ,

so that the λ j ’s are the eigenvalues, with associated unit eigenvectors qj ’s, of H . Ac-
cordingly, QΛQT is called the eigenvalue decomposition of H . We conventionally list
the eigenvalues in nonincreasing order of their absolute values, and in this case write
Λ(H ) := Λ and λ(H ) := (λ1;λ2; . . . ;λn). It is easy to see that ‖H‖F = ‖Λ(H )‖F = ‖λ(H )‖2
and ‖H‖2 = ‖Λ(H )‖2 = |λ1|.

A.2 Positive (semi)definiteness

Definition A.2. A matrix H ∈ Sn is called positive semidefinite (denoted H ∈ Sn
+ or

H & 0) if
xT H x ≥ 0 for all x ∈ IRn ,
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A.2. Positive (semi)definiteness 111

and positive definite (denoted H ∈ Sn
++ or H ( 0) if

xT H x > 0 for all nonzero x ∈ IRn .

For A,B ∈ Sn , we write A ( B or B ≺ A (A & B or B * A) if A− B is positive
(semi)definite.

From the definition, it is clear that it is easy to demonstrate that H is not positive
semidefinite or positive definite, but it doesn’t seem easy to show that it is. The theorem
below gives a number of ways to accomplish this. Perhaps the best way to certify positive
definiteness is by using the following notion.

Definition A.3. Given H ∈ Sn , H = LLT is a Cholesky factorization and L is a Cholesky
factor of H if L is a lower triangular n× n matrix with positive diagonal entries.

Here is the characterization result.

Theorem A.4. The following are equivalent for H ∈ Sn :

(a) H is positive semidefinite (definite);

(b) xT H x ≥ 0 for all x ∈ IRn (xT H x > 0 for all nonzero x ∈ IRn );

(c) λ(H )≥ 0 (λ(H )> 0);

(d) H = J J T for some n × r matrix J (H = J J T for some nonsingular n × n matrix J ;
indeed, J can be taken to be lower triangular with positive diagonal entries).

Proof. (a) ⇔ (b) by definition. Suppose H = QΛ(H )QT . Then for any x, xT H x =
yTΛ(H )y =

∑
j λ j (H )y2

j for y = QT x. Noting that x is nonzero iff y is, we see that (b)
⇔ (c).

Finally, if H = J J T , then xT H x = xT J J T x = ‖J T x‖2 ≥ 0, and if J is nonsingular and
x is nonzero, then J T x is also nonzero so that its norm is positive. This shows that (d)
⇒ (b). Conversely, if H is positive semidefinite (definite), we can write H =QΛ(H )QT

with λ := λ(H ) ≥ 0 (λ := λ(H ) > 0). Then we can choose J := QΛ(H )1/2QT , where
Λ(H )1/2 := Diag (

#
λ1,
#
λ2, . . . ,

#
λn), and it is easy to see that H = J J T . Moreover,

J is nonsingular if H is positive definite, since its inverse can be explicitly obtained as
QΛ(H )−1/2QT , where Λ(H )−1/2 := Diag (1/

#
λ1,1/

#
λ2, . . . , 1/

#
λn).

It remains to prove that J can be chosen to be a Cholesky factor for a positive definite
H . For this we use induction on n, the result being trivial for n = 1, since then H is
a 1× 1 positive definite matrix, whose only entry must be positive, and therefore has a
positive square root. (The result is also vacuously true for n = 0, but some readers may be
unhappy discussing vacuous matrices and vectors.) Suppose the result is true for positive
definite matrices of order at most n−1, and consider an n×n positive definite matrix H ,
which we write in partitioned form as

H =:
$
γ hT

h H̄

%
.

By considering vectors of the form x = (ξ ; 0), we see that γ is positive. (Similarly, H̄ is
positive definite, but we will see that in fact a stronger statement is true, and necessary to
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112 Appendix A. Background Material

the proof.) Suppose we can write H = LLT for a lower triangular matrix L with positive
diagonal entries. Then, writing L in partitioned form as

L=:
$
λ 0T

l L̄

%
, (A.2.1)

we find
λ2 = γ , λl = h, and L̄L̄T + l l T = H̄ .

Conversely, if these equations hold, with λ positive and L̄ a lower triangular matrix of
order n− 1 with positive diagonal entries, then L as in (A.2.1) is a Cholesky factor of H .
The first two equations can be satisfied by setting λ := -γ and l := (1/λ)h = (1/-γ )h.
Then the last equation is satisfied as long as L̄L̄T = H̄ − l l T = H̄ − (1/γ )h hT . So we
can use the inductive hypothesis to complete the proof as long as we can show that the
latter matrix is itself positive definite. But using the definitions of λ and h, we obtain the
factorization

$
γ hT

h H̄

%
=
&
λ 0T

l I

'$
1 0T

0 H̄ − l l T

%&
λ l T

0 I

'
.

Since the matrix on the left-hand side is positive definite, so is the matrix in the middle
on the right-hand side, and hence by considering vectors of the form (0; ȳ), we get that
H̄ − l l T is positive definite, and we are done.

We can derive a few consequences.

Corollary A.5. The Cholesky factorization of a positive definite matrix is unique.

Proof. Indeed, the proof above shows that the first column of the Cholesky factor is
uniquely defined. Proceeding inductively shows that the whole matrix is unique.

Corollary A.6. Every positive semidefinite matrix H has a positive semidefinite square root
H 1/2 satisfying H 1/2H 1/2 =H. Every positive definite matrix has a positive definite inverse.

Proof. If H = QΛQT is positive semidefinite, we know that the diagonal entries of Λ
are nonnegative, and so have nonnegative square roots, which we can arrange into the
diagonal matrix Λ1/2. Then H 1/2 := QΛ1/2QT establishes the first part. If H is positive
definite, the diagonal entries of Λ are positive, and so have positive reciprocals, forming
the diagonal matrixΛ−1. Then H−1 =QΛ−1QT has positive eigenvalues and so is positive
definite.

In fact, the positive semidefinite square root is unique, but we will not prove this here.
Note the progression of extensions of the square root function from scalars to diagonal
matrices to symmetric matrices; this technique can also be used for other functions, such
as the inverse (which then coincides with the regular inverse) on nonzero scalars and
nonsingular diagonal matrices or symmetric matrices, the exponential, and the logarithm
on positive scalars and positive definite diagonal or symmetric matrices.

If H is positive definite, so is its positive semidefinite square root, and so it has an
inverse, denoted H−1/2. It is easy to see that this is also the positive semidefinite square
root of H−1.
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A.2. Positive (semi)definiteness 113

Positive semidefinite square roots are very useful in proofs. For example, we have the
following.

Corollary A.7. If A,B ∈ Sn are positive definite, then A& B iff B−1 &A−1.

Proof. A& B is equivalent to I & A−1/2BA−1/2. But this just means that all eigenvalues
of the positive definite matrix A−1/2BA−1/2 are positive and at most 1, which holds iff all
the eigenvalues of its inverse, A1/2B−1A1/2, are at least 1, or A1/2B−1A1/2 & I . But this is
equivalent to B−1 &A−1.

For the next corollary, a principal rearrangement of a matrix H is obtained by
reordering its rows and columns correspondingly: it is of the form P H P T , where P is
a permutation matrix, that is a 0–1 matrix with exactly one 1 in every row and in every
column. A principal submatrix of a matrix is obtained by choosing a subset of its rows
and the correspondingly indexed subset of columns. A leading principal submatrix is
one corresponding to a subset {1,2, . . . , k} for 1 ≤ k ≤ n: it occupies the top left-hand
corner of H . It is immediate that a principal rearrangement or a principal submatrix of a
positive (semi)definite matrix is positive (semi)definite. A (leading) principal minor is the
determinant of a (leading) principal submatrix.

Corollary A.8. Every principal minor of a positive definite matrix is positive. Conversely,
if every leading principal minor of a symmetric matrix is positive, it is positive definite.

Proof. Since every principal minor is a leading principal minor of a principal rearrange-
ment, it is enough to show that H is positive definite iff every leading principal minor of
H is positive. For the “only if” part, suppose H = LLT is the Cholesky factorization of a
positive definite matrix H , and let H11 and L11 be the leading k×k principal submatrices
of H and L. Then it is easy to see that H11 = L11LT

11, so that its determinant is the square of
that of L11, and is hence positive. For the “if” part, suppose all leading principal minors of
H are positive, and suppose we have completed the Cholesky factorization of H through
the kth column, so that

H =:
&

H11 H12
H21 H22

'
=
&

L11 0
L21 I

'$
I 0
0 H̄22

%&
LT

11 LT
21

0 I

'
,

where all partitions are into the first k rows and columns and the last n − k, and where
all diagonal entries of L11 are positive. Then the leading k × k principal minor of H ,
det H11, is equal to the determinant of the leading k×k principal minor of the right-hand
side, which is (det L11)2 and positive. Now let us consider the leading (k + 1)× (k + 1)
principal minors. For the left-hand side, this is a leading principal minor of H , and is
hence positive. For the right-hand side, because of the triangularity of the first and last
matrices, it is the product of the leading (k + 1)× (k + 1) principal minors of the three
matrices on the right-hand side. For the first and third matrices, this is det L11 again,
while for the middle matrix, it is exactly the top left-hand entry of H̄22. We can conclude
that this entry is positive, and this allows us to continue the Cholesky factorization one
more step, as in the proof of the existence of the Cholesky factorization. Continuing in
this way, we see that positivity of the leading principal minors implies the existence of a
Cholesky factorization, and hence positive definiteness.

It turns out that positive semidefiniteness implies that all principal minors are non-
negative and conversely, but nonnegativity of just the leading principal minors is not
sufficient, as shown by the matrix Diag (0,−1).
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114 Appendix A. Background Material

Computing the (leading) principal minors of a matrix is a reasonable way to test the
positive definitiveness or semidefiniteness of a very small matrix, but it becomes less effi-
cient (especially if all 2n principal minors need to be calculated!) as n grows. Computing,
or trying to compute, the Cholesky factorization is a more efficient technique, taking
O(n3) floating-point operations, and is also numerically stable. Moreover, it is not hard
to see that, if the factorization breaks down at any stage, it is straightforward to find a
nonzero vector x with xT H x ≤ 0. The Cholesky factorization has other benefits also. We
saw above that positive definite matrices H are nonsingular: the Cholesky factorization
allows us to cheaply (in O(n2) arithmetic operations) compute the solution to systems
H x = b , since we can solve the lower triangular system Ly = b easily, obtaining the
components of y in the order y1, y2, . . . , yn , and then similarly solve the upper triangular
system LT x = y, finding the components of x in the order xn , xn−1, . . . , x1. We now have
H x = LLT x = Ly = b , as desired.

The well-known Cauchy–Schwarz inequality states that, for two vectors x and y in
IRn ,

|yT x|≤ ‖x‖‖y‖.
The existence of positive semidefinite square roots allows a very useful generalization of
the Cauchy–Schwarz inequality. Often it is useful to think of a copy of IRn called the dual
space, and a scalar product defined on two vectors, one from the dual space and one from
the original space. For example, the original space might contain the arguments of a real-
valued function, and then the derivative of this function would be regarded as a vector
in the dual space. In this case, if we define a norm in the original space using a positive
definite matrix H ∈ Sn by

‖x‖H :=
-

xT H x ,

it is natural to define the norm in the dual space

‖y‖∗H :=
#

yT H−1y.

Note that, if H 1/2 is the positive definite square root of H and H−1/2 is its inverse (or
alternatively the positive definite square root of H−1), then ‖x‖H = ‖H 1/2x‖ and ‖y‖∗H =
‖H−1/2y‖, where the norms on the right are Euclidean. In this case, the generalized
Cauchy–Schwarz inequality states that

|yT x|≤ ‖x‖H ‖y‖∗H .

The proof of this is very straightforward from expanding ‖H 1/2x + λH−1/2y‖2 as a
quadratic in λ and writing the condition for this quadratic to be nonnegative everywhere.
It is then simple to see that the norm in the dual space is in fact the norm dual to the norm
in the original space:

‖y‖∗H =max{yT x : ‖x‖H ≤ 1}.
Similar dual norms of symmetric matrices can be defined: for any nonsingular n× n

matrix M we can define ‖X‖M := ‖MX M T ‖F and ‖Y ‖∗M := ‖M−T Y M−1‖F for X in Sn

and Y in its dual space.
It is clear that the set of positive (semi)definite matrices forms a cone in Sn : if U lies

in either set, so does λU for any positive λ. In fact, the cone Sn
+ is self-dual, i.e., it equals

its dual cone
(Sn
+)
∗ := {U ∈ Sn : U •V ≥ 0 for all V ∈ Sn

+}.
To show that it is contained in its dual cone, let U and V be positive semidefinite. Then

U •V = Trace(U 1/2U 1/2V 1/2V 1/2) = Trace(V 1/2U 1/2U 1/2V 1/2) = ‖U 1/2V 1/2‖2
F ≥ 0,
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A.3. Schur complements and low-rank updates 115

where we used (A.1.1). For the reverse inclusion, note that Theorem A.4 implies that
xxT is positive semidefinite for any x ∈ IRn . Thus any U in the dual cone has xT U x =
Trace(xT U x) = Trace(U xxT ) = U • xxT ≥ 0 for any x, so is positive semidefinite.
Finally, note that if U and V are positive semidefinite and U •V is zero, then the equation
above shows that U 1/2V 1/2 is zero. In particular, if U is positive definite, so that U and
U 1/2 are nonsingular, then V 1/2 and hence V must be zero. Similarly, if V is positive
definite, U must be zero. Also, U 1/2V 1/2 = 0 implies UV = 0.

A.3 Schur complements and low-rank updates
Suppose we partition the matrix M ∈ IR(n+k)×(n+k) as

M =:
&

A B
C T D

'
, (A.3.1)

where A is n× n, B and C are n× k, and D is k × k. If A is nonsingular, row operations
can then eliminate the submatrix C T , which amounts to factorizing M as

M =
&

I 0
C T A−1 I

'&
A B
0 D −C T A−1B

'
.

We call D −C T A−1B the Schur complement of A in M . Note that H̄ − (1/γ )h hT in the
proof of Theorem A.4 is the Schur complement of γ in H . Similarly, if D is nonsingular,
we obtain

M =
&

I BD−1

0 I

'$
A−BD−1C T 0

C T D

%
.

(Note that A − BD−1C T is the Schur complement of D in M .) We can use these
expressions to relate the nonsingularity of M , A−BD−1C T , and D−C T A−1B and obtain
formulae for the inverses of the latter matrices. Usually we think of n as large and k as
much smaller, so that A− BD−1C T is a low-rank modification of A, and (A.3.2) below
gives a formula for its inverse in terms of that of the original matrix A and the much
smaller matrix D −C T A−1B .

Theorem A.9. Suppose the matrix M is partitioned as in (A.3.1). If A is nonsingular,
det M = det A det(D −C T A−1B) and (a) and (b) below are equivalent. If D is nonsingular,
det M = det D det(A−BD−1C T ) and (a) and (c) are equivalent.

(a) M is nonsingular.

(b) D −C T A−1B is nonsingular.

(c) A−BD−1C T is nonsingular.

Finally, if both A and D are nonsingular, then (b) and (c) are equivalent, and if these hold,

(A−BD−1C T )−1 =A−1+A−1B(D −C T A−1B)−1C T A−1, (A.3.2)

and similarly (D −C T A−1B)−1 = D−1+D−1C T (A−BD−1C T )−1BD−1 .
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116 Appendix A. Background Material

Proof. All the statements follow immediately from the two equations above the theorem
except the last one. For this, we take the inverses of these two equations to get

$
A−BD−1C T 0

C T D

%−1 & I BD−1

0 I

'−1

=
&

A B
0 D −C T A−1B

'−1 &
I 0

C T A−1 I

'−1

.

This gives
$

(A−BD−1C T )−1 0
−D−1C T (A−BD−1C T )−1 D−1

%

=
$

A−1 −A−1B(D −C T A−1B)−1

0 (D −C T A−1B)−1

%&
I 0

−C T A−1 I

'&
I BD−1

0 I

'
,

and evaluating the top left-hand corner of both sides gives (A.3.2). The other equation is
established similarly.

Applying the result with B = u, C = v, and D =−1, we obtain the rank-one update
formulae.

Corollary A.10. Suppose A ∈ IRn×n is nonsingular and u, v ∈ IRn. Then det(A+ uvT ) =
(1+vT A−1 u)detA. Moreover, A+ uvT is nonsingular iff 1+vT A−1 u is nonzero, in which
case

(A+ uvT )−1 =A−1− 1
1+ vT A−1 u

A−1uvT A−1.

Low-rank update formulae are frequently attributed to Sherman, Morrison, and
Woodbury, but in fact they were discovered earlier and have been rediscovered many times
since; see the survey article of Hager [40].

We now establish related results for symmetric matrices. Suppose we partition the
symmetric matrix M ∈ IR(n+k)×(n+k) as

M =:
&

H V
V T D

'
, (A.3.3)

where H is n × n and symmetric, V is n × k, and D is k × k and symmetric. Then we
can perform both row and column operations to zero out the off-diagonal blocks in two
ways. If D is positive definite,

M =
&

I V D−1

0 I

'&
H −V D−1V T 0

0 D

'&
I 0

D−1V T I

'
,

while if H is positive definite,

M =
&

I 0
V T H−1 I

'&
H 0
0 D −V T H−1V

'&
I H−1V
0 I

'
.

Since the matrices on the left and right in the products are nonsingular and transposes of
one another, we can conclude the positive (semi)definiteness of larger matrices from that
of smaller ones.
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A.4. Matrix analysis 117

Theorem A.11. Suppose M is given by (A.3.3). Then we have the following.

(a) If D is positive definite, M is positive (semi)definite exactly when H −V D−1V T is.

(b) If H is positive definite, M is positive (semi)definite exactly when D −V T H−1V is.

(c) If both D and H are positive definite, H −V D−1V T is positive (semi)definite exactly
when D −V T H−1V is.

We note that a Cholesky factorization of H can be updated to one of H+δu uT (with
1+ δuT H−1 u > 0 if δ is negative) in O(n2) arithmetic operations; see Gill et al. [34].

A.4 Matrix analysis
Here we discuss the differentiability of some useful functions of matrices. First, we note
that occasionally we deal with matrix functions of scalars. A function F (ξ ) = ( fi j (ξ ))
of a scalar ξ is continuously differentiable if each entry fi j is, and then its derivative is
F ′(ξ ) = ( f ′i j (ξ )), and similarly for twice continuous differentiability.

Now we turn to real-valued functions of matrices. A function of an n × n matrix is
continuously differentiable if it is so when regarded as a function of its n2 entries, or in
the case of a function of symmetric matrices, of the n(n+1)/2 entries in its lower triangle,
and similarly for twice continuous differentiability.

The directional derivative of a function of a matrix A in the direction of the matrix E
will then be linear in the matrix E , and hence can be written as M •E for some matrix M ,
and we call M the gradient of f at A and denote it ∇ f (A):

d
dα

f (A+αE)|α=0 =:∇ f (A) • E .

If the function’s argument is a symmetric matrix, then the direction matrix E will be
symmetric, and since any linear function of a symmetric matrix E can be written as M •E
for a symmetric M , we take the gradient to also be a symmetric matrix.

Our prime example is the logdet function, defined on symmetric matrices by

lndet(H ) =
(

lndet(H ) if H is positive definite,
−∞ otherwise.

This is clearly infinitely differentiable anywhere it is finite. We will see that its derivatives
are very closely related to those of the one-dimensional function lnξ , whose first and
second derivatives are ξ −1 and −ξ −2 for positive ξ . To find its gradient we proceed as
follows:

det(H +αE) = det H det(I +αH−1E).
Now the last determinant is a polynomial of degree n in α, and its lowest degree terms
are 1+αTrace(H−1E). Hence

d
dα

lndet(H +αE)|α=0 =
1

det H
d

dα
det(H +αE)|α=0

=
1

det H
det H Trace(H−1E) =H−1 • E ,

from which we obtain

∇ lndet(H ) =H−1 for positive definite H . (A.4.1)
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118 Appendix A. Background Material

We can also compute the second derivative of lndet: this is the linear function
D2lndet(H )[·, ·] of two symmetric direction matrices that is symmetric in its arguments,
D2lndet(H )[E1, E2] = D2lndet(H )[E2, E1], and satisfies

D2lndet(H )[E , E] =
d 2

dα2
lndet(H +αE)|α=0.

From our derivations above, the right-hand side is just

d
dα
(H +αE)−1|α=0 • E .

To evaluate this, we need the following remarkable lemma.

Lemma A.12. If F ∈ IRn×n satisfies ‖F ‖2 < 1, then I − F is nonsingular with

(I − F )−1 = I + F + F 2+ . . . .

Proof. First we need to show that the right-hand side is well defined. Let φ := ‖F ‖2 < 1.
Then every entry of F k is bounded in absolute value by ‖F k‖2 ≤ ‖F ‖k

2 = φ
k , so that

every entry on the right-hand side is a series whose terms are bounded in magnitude by
those of a geometric series. Hence all these series converge as desired. The result now
follows by taking the limit as k→∞ of the identity

(I − F )(I + F + F 2+ · · ·+ F k ) = I − F k+1.

The lemma implies that, if H is nonsingular and α sufficiently small,

(H +αE)−1 = H−1(I +αE H−1)−1

= H−1−αH−1E H−1+α2H−1E H−1E H−1− . . . . (A.4.2)

Putting these facts together, we obtain

D2lndet(H )[E1, E2] =−(H−1E1H−1) • E2. (A.4.3)

The identity (A.1.1) shows that this is symmetric in its two arguments. Similar analyses
can be used to compute any derivative of lndet.

Equation (A.4.2) above allows us to obtain the useful directional derivative of the
inverse function:

d
dα
(H +αE)−1|α=0 =−H−1E H−1. (A.4.4)

A.5 Convexity
A set C in IRn is called convex if whenever x and y lie in C , so do all convex combinations
of the form (1−λ)x+λy for 0≤ λ≤ 1. The same definition can be used to define convex
subsets of IRm×n or Sn . A function f : IRn → IR is called convex if, for any arguments x
and y in IRn , and any 0≤ λ≤ 1,

f ((1−λ)x +λy)≤ (1−λ) f (x)+λ f (y).
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A.6. Optimality conditions and duality 119

This definition can be extended to functions defined only on a convex subset C of IRn by
restricting x and y to C . It is often convenient to extend such a function to all of IRn by
defining it to be +∞ outside C . In this case, f is convex iff

{(x;ξ ) ∈ IRn+1 : ξ ≥ f (x)}
is a convex set. Again, similar definitions can be made for functions defined on IRm×n or
Sn .

Suppose f is defined and differentiable on an open convex subset C of IRn . Then f is
convex iff, for every x, y ∈C ,

f (y)≥ f (x)+∇ f (x)T (y − x).

If f is instead defined and differentiable on an open convex subset of IRm×n or Sn , the
above inequality is replaced by

f (Y )≥ f (X )+∇ f (X ) • (Y −X ),

where ∇ f (X ) is the matrix gradient as defined in the previous section.
Finally, suppose f is defined and twice differentiable on an open convex subset of IRn .

Then f is convex iff, for every x ∈C ,

∇2 f (x) is positive semidefinite.

If f is defined and twice differentiable on an open convex subset of a matrix space, the
condition above becomes

D2 f (X )[E , E]≥ 0 for all E ,

which can be taken as a definition of the positive definiteness of the operator D2 f (X ).
This shows that −lndet is a convex function on symmetric matrices (see (A.4.3)), since
(H−1E H−1) • E = ‖H−1/2E H−1/2‖2

F ≥ 0.
All of these results can be obtained easily by reducing properties of the function f

defined on a high-dimensional space to those of the univariate function φ defined by
φ(λ) := f (x + λ(y − x)) or φ(λ) := f (X + λE), etc. Indeed, convexity of f holds iff
each such φ is convex, and the two conditions above just state that the corresponding φ
has its second derivative nonnegative at 0.

A.6 Optimality conditions and duality
Consider the nonlinear programming problem

minx f (x)
(P ) gi (x)≤ 0, i = 1, . . . , m,

hj (x) = 0, j = 1, . . . , p.

Generally, we assume all functions are finite (real-valued) and differentiable throughout
IRn , although it is also useful to allow functions that are finite and differentiable on an
open subset of IRn and conventionally defined to be +∞ elsewhere.

We say x is feasible for (P ) if all functions are finite at x and all constraints are satisfied
there. A feasible solution x̄ is a global (local) minimizer for (P ) if (there is a positive ε
such that), for all feasible x (with ‖x − x̄‖ ≤ ε), f (x) ≥ f (x̄). The following optimality
conditions are due to Karush [47] and John [45].
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120 Appendix A. Background Material

Theorem A.13. If x̄ is a local minimizer for (P ), there are multipliers τ ≥ 0, u ∈ IRm
+ , and

v ∈ IRp , not all zero, such that

τ∇ f (x̄)+
∑

i
ui∇gi (x̄)+

∑
j

v j∇hj (x̄) = 0,

ui gi (x̄) = 0, i = 1, . . . , m.

The second set of equations above are called complementary slackness conditions: a
multiplier ui can only be positive if gi (x̄) = 0, i.e., the corresponding inequality constraint
is tight at x̄ .

We can restrict τ to be positive and hence, without loss of generality, equal to 1 under
additional regularity conditions. For example, the Slater condition suffices: f and all
gi ’s are convex, all hj ’s are affine, and there is a feasible point x̂ with g (x̂) < 0 so that
all inequality constraints hold strictly. In this case, we obtain the Karush–Kuhn–Tucker
conditions [47, 55]:

∇ f (x̄)+
∑

i
ūi∇gi (x̄)+

∑
j

v̄ j∇hj (x̄) = 0,

ūi gi (x̄) = 0, i = 1, . . . , m.

These conditions are also sufficient for optimality in the convex case: we say that
a nonlinear programming problem is convex if f is convex (or concave if we are
maximizing), all gi ’s are convex, and all hj ’s are affine.

Note that the first condition above can be written as

∇x L(x̄ , ū, v̄) = 0,

where L : IRn × IRm × IRp → IR is the Lagrangian function

L(x, u, v) := f (x)+ uT g (x)+ vT h(x).

It is clear that maxu≥0,v L(x, u, v) equals f (x) if x is feasible and +∞ otherwise, so that
we can rewrite our problem as

(P ) min
x
{max

u≥0,v
L(x, u, v)}.

On the other hand, if u ≥ 0, for every feasible x, f (x)≥ L(x, u, v), so that minx L(x, u, v)
provides a lower bound on the optimal value of (P ). Hence the Lagrangian dual of (P ),

(D) max
u≥0,v
{min

x
L(x, u, v)},

has optimal value at most that of (P ). In important cases, such as convex problems where
an optimal solution x̄ exists at which the Karush–Kuhn–Tucker conditions hold, both
problems have optimal solutions and their objective values are equal: we say strong duality
holds. The difference between the primal and dual optimal objective values is called the
duality gap; hence if strong duality holds, there is no duality gap.

For simplicity above, we have taken x to lie in IRn and the constraints to be real valued.
However, we can choose matrix spaces in each case. For example, we can replace x with a
matrix variable X above, and then the gradients like∇ f (X̄ ) become the matrix gradients
as in the previous sections. Similarly, if the equality constraints become, say, H (X ) = 0,

D
ow

nl
oa

de
d 

07
/1

5/
16

 to
 1

32
.2

39
.1

.2
31

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



A.7. Compactness of the set of direction matrices 121

where H takes matrices into matrices, the multiplier v becomes a matrix V in the same
space as the range of H ,

∑
j v j∇hj (x) becomes V • ∇H (X ), and the last term in the

Lagrangian function becomes V •H (X ).
Finally, if we have a minimization problem over matrices X ∈ Sn , and an additional

constraint that X must be positive semidefinite, we form the Lagrangian in exactly the
same way, but our minimizations in both (P ) and (D) over X become minimizations
over X ∈ Sn

+.

A.7 Compactness of the set of direction matrices
Let Y ∈ IRk×m and Z ∈ IR!×m , and let U be a nonzero positive semidefinite diagonal m×m
matrix. In this section we will show that there is a solution E ∈ IRk×! to

E(ZU ZT ) =−Y U ZT , (A.7.1)

and that furthermore, there is a compact set F in IRk×! (depending on Y and Z) such that
(A.7.1) has a solution in F for all such U . (We apologize for the notation in this section.
We used letters in (A.7.1) to conform to those in Chapters 4 and 5, but use F for the
compact set since E is reserved for ellipsoids. Also, we use f j for a column of ET because
e j is used for a unit vector, and−gj for a column of Y T because yi is reserved for a column
of Y .)

We write (A.7.1) in transposed form, and then consider each column, to get

(ZU ZT ) f j = ZU gj ,

where f j is the j th column of ET and −gj is the j th column of Y T . Note that this holds
iff f j solves the least-squares problem

min‖U 1/2ZT f −U 1/2 gj ‖. (A.7.2)

If we can show that f can be restricted to a compact set F j in IR!, then existence follows
since we are minimizing a continuous function over a compact set, and moreover we can
take

F := {E ∈ IRk×! : the j th column of ET lies in F j for each j }.

Proposition A.14. There is a compact set F j , depending on Y and Z, so that the solution to
(A.7.2) can be restricted to F j .

Proof. Consider the hyperplane arrangement given by the hyperplanes zT
i f = γi j , i =

1, . . . , m, where zi is the ith column of Z and γi j is the ith component of gj . If the span
S of the zi ’s is not all of IR!, then f can be restricted to S, since any component in its
orthogonal complement doesn’t change the objective in (A.7.2). Thus we assume S = IR!
without loss of generality. Then the arrangement will have vertices, intersection points
of ! hyperplanes with linearly independent normals zi . Let F j be the convex hull of all
such vertices. If f does not lie in this set, it must lie in the relative interior of one of
the unbounded polyhedral regions cut out by the hyperplane arrangement, so there is a
nonzero direction d with zT

i ( f + λd )− γi j having the same sign for all positive λ. This
implies that each zT

i ( f −λd )− γi j is nonincreasing in absolute value as we increase λ, so
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122 Appendix A. Background Material

we will reach a new point f ′ lying in a polyhedral region of smaller dimension, with all
components of ZT f ′− gj no larger in absolute value than those of ZT f − gj . Continuing
in this way, we will eventually reach a bounded polyhedral region, so that our point lies
in F j , and has no larger objective value than f .

A.8 Derivation of a dual to the maximum-volume inscribed
ellipsoid problem

Recall the convex formulation of the maximum-volume inscribed ellipsoid problem in
Subsection 6.3.1:

minv∈Rn ,B∈Sn −2 lndet(B)
yT

i v + ‖Byi‖ ≤ 1, i = 1, . . . , m. (A.8.3)

Using Lagrange multipliers 2ξ ∈ IRm , we obtain the Lagrangian function

L(v,B ,ξ ) :=−2 lndet(B)+ 2 vT Y ξ + 2
∑

i
ξi‖Byi‖− 2 eT ξ .

Note that, if Y ξ 3= 0, we can drive this to −∞ by an appropriate choice of v. Also, we
have assumed that the yi ’s span IRn , but if the yi ’s corresponding to positive ξi ’s do not
span IRn , there will be a vector z orthogonal to all such yi ’s, and then fixing v and choosing
B = I +µzzT , with µ approaching +∞, drives the Lagrangian to −∞.

Thus we assume that Y ξ = 0 and the yi ’s corresponding to positive ξi ’s span IRn , and
consider

φ(ξ ) :=minv∈Rn ,B∈Sn (−2 lndet(B)+ 2 vT Y ξ + 2
∑

i ξi‖Byi‖− 2 eT ξ )
= minB∈Sn ψ(B ,ξ ), (A.8.4)

where
ψ(B ,ξ ) :=−2 lndet(B)+ 2

∑
i
ξi‖Byi‖− 2 eT ξ . (A.8.5)

Proposition A.15. Under the above conditions on ξ , the minimum of ψ(·,ξ ) over Sn is
attained by a unique positive definite B.

Proof. Let λmax(B) be the largest eigenvalue of B and let PB denote orthogonal projection
onto the corresponding eigenspace. Then

ψ(B ,ξ )≥−2n lnλmax(B)+min{ξi : ξi > 0}λmax(B)
∑

i :ξi>0

‖PB yi‖− 2 eT ξ .

We claim there is some ε> 0 such that
∑

i :ξi>0 ‖PB yi‖ ≥ ε for all B ∈ Sn . Indeed, if not,
there is a sequence {Bk} ⊂ Sn such that

∑
i :ξi>0 ‖PBk

yi‖ → 0. Let wk be any unit vector
in the range of PBk

, and by taking limits if necessary, assume wk → w 3= 0. Then, since
wT

k yi → 0 for all i with ξi > 0, we find that wT yi = 0 for all such yi ’s. But this contradicts
the fact that these yi ’s span IRn .

We conclude that

ψ(B ,ξ )≥−2n lnλmax(B)+ εmin{ξi : ξi > 0}λmax(B)− 2 eT ξ ,

and since the right-hand side tends to∞ with λmax(B), we can confine our search for a
minimizing B to those with λmax(B)≤ Λ for some Λ<∞.
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A.8. Derivation of a dual to the maximum-volume inscribed ellipsoid problem 123

Also, if λmin(B) denotes the smallest eigenvalue of such B , then

ψ(B ,ξ )≥−2(n− 1) lnλmax(B)− 2 lnλmin(B)− 2 eT ξ

≥−2(n− 1) lnΛ− 2 lnλmin(B)− 2 eT ξ ,

and the right-hand side tends to∞ as λmin(B) approaches 0. Hence we can without loss
of generality restrict B to the compact set {B ∈ Sn : λ ≤ λmin(B) ≤ λmax(B) ≤ Λ} for
some 0< λ< Λ<∞, and since the objective function is continuous on this set, it attains
its minimum. Moreover, the minimum is finite (since B = I gives a finite value), so any
minimizer must be positive definite, and it must be unique because the objective is strictly
convex.

Since all the yi ’s are nonzero, the function ψ(·,ξ ) is differentiable at all positive
definite B , and with ‖Byi‖= (yT

i B2yi )1/2, we find

∇Bψ(B ,ξ ) =−2B−1+
∑

i

ξi

‖Byi‖
(Byi yT

i + yi yT
i B).

Let us set

ui :=
ξi

‖Byi‖
, i = 1, . . . , m.

Then at a minimizer of ψ(·,ξ ), we have

2B−1 = BY U Y T +Y U Y T B .

Postmultiplying by B , we see that Y U Y T B2 is symmetric, so Y U Y T commutes with B2,
and hence with B . Thus B is a minimizer iff

B−2 = Y U Y T or B = (Y UY T )−1/2,

in which case

φ(ξ ) =ψ(B ,ξ ) = lndet(Y U Y T )+ 2
∑

i
ui yT

i (Y U Y T )−1yi − 2 eT ξ

= lndet(Y U Y T )+ 2 (Y U Y T ) • (Y U Y T )−1− 2 eT ξ

= lndet(Y U Y T )+ 2n− 2 eT ξ .

Now suppose that ξ̂ = λξ , where λ≥ 0 and eT ξ = n, and that û is defined as above from
ξ̂ . Then if u := λ2 û, we find ui = ξi/‖(Y U Y T )−1/2yi‖, so that

φ(ξ̂ ) = 2n lnλ+ lndet(Y U Y T )+ 2n− 2nλ.

In the dual problem, we are maximizing φ, so we can assume that λmaximizes the right-
hand side above, i.e., λ = 1. Equivalently, we can assume that eT ξ = n, and so we add
this constraint. We can ignore the requirement that the yi ’s corresponding to positive
ξi ’s (or equivalently positive ui ’s) span IRn , because if not, Y U Y T is singular and its log
determinant is −∞. We thus obtain the dual problem

maxu∈Rm ,ξ∈Rm lndet(Y UY T )
Y ξ = 0,

eT ξ = n,
ξi = ui‖(Y U Y T )−1/2yi‖, i = 1, . . . , m,
u ≥ 0,

and we have observed in Section 6.3 that in fact the equation linking the ξ and u variables
can be relaxed to a greater-than-or-equal-to inequality.
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Appendix B

MATLAB Codes

Here is a MATLAB file for the centered minimum-volume enclosing ellipsoid problem.
For n = 2, it draws the successive ellipses, using David Long’s code ellipse.m available
from MATLAB Central.

function [u,R,factor,improv,mxv,mnv,flagstep,lamhist,var,time,iter,act] =...
minvol(X,tol,KKY,maxit,print,u)

% Finds the minimum-volume ellipsoid containing the columns of X using the
% Fedorov-Wynn-Frank-Wolfe method, with Wolfe-Atwood away steps if KKY = 0.
% The algorithm also uses the method of Harman and Pronzato to
% eliminate points that are found to be inessential.
%
% The algorithm returns an ellipsoid providing a (1+tol)n-rounding of
% the convex hull of the columns of X in n-space. Set tol to eps/n to get
% a (1+eps)-approximation of the minimum-volume ellipsoid.
%
%%%%%%%%%%%%%%%%%%%% INPUT PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% X is the input data set.
%
% tol is the tolerance (measure of duality gap), set to 10^-7 by default;
%
% KKY is:
% 0 (default) for the Wolfe-Atwood method using Wolfe’s away steps
% (sometimes decreasing the weights) with the Kumar-Yildirim start;
% 1 if using the Fedorov-Wynn-Frank-Wolfe algorithm
% (just increasing the weights) with the Khachiyan initialization;
% 2 for the Wolfe-Atwood method with the Khachiyan initialization;
%
% maxit is the maximum number of iterations (default 100,000);
%
% print is the desired level of printing (default 1); and
%
% u is the initial value for the weights (default as above).
%
%%%%%%%%%%%%%%%%%%%%% OUTPUT PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%

125

D
ow

nl
oa

de
d 

07
/1

5/
16

 to
 1

32
.2

39
.1

.2
31

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



126 Appendix B. MATLAB Codes

% u determines the optimal weights on the m columns of X (U = Diag(u));
%
% R is a scaled (upper triangular) Cholesky factor of
% M := XUX’: R^T*R = factor * XUX’;
%
% improv(i) gives the objective improvement at iteration i;
%
% mxv(i) gives the maximum variance (x_i^T M^{-1} x_i) at iteration i;
%
% mnv(i) gives the minimum variance for those i with u_i positive
% at iteration i;
%
% flagstep(i) identifies the type of step taken at iteration i: 1(drop),
% 2(decrease), 3(add), and 4(increase);
%
% lamhist(i) holds the step length lam at iteration i;
%
% var gives the variances of all the points at completion
% (points that have been eliminated are assigned the value -1);
%
% iter is the total number of iterations taken;
%
% act is the index set of active columns of X, those that have not
% been eliminated; and
%
% time is the total cputime spent in order to obtain the optimal solution.
%
% Calls initwt, updateR, updatevar, and ellipse if n = 2 to draw
% the ellipse at each iteration.

%%%%%%%%%%%%%%%%% INITIALIZE INPUT PARAMETERS IF NOT DEFINED %%%%%%%%%%%%

if (nargin < 1), error(’Please input X’); end
[n,m] = size(X);
if (nargin < 2), tol = 1e-07; end
if (nargin < 3), KKY = 0; end;
if (nargin < 4), maxit = 100000; end;
if (nargin < 5), print = 1; end;
if print,

fprintf(’\n Dimension = %5.0f, Number of points = %5.0f’,n,m)
fprintf(’, Tolerance = %5.1e \n’,tol);

end;
if (nargin < 6),

if (KKY >= 1),
u = (1/m) * ones(m,1);
fprintf(’\n Using Khachiyan initialization \n’);

else
u = initwt(X,print);

end;
end;

%%%%%%%%%%%%%%%%% INITIALIZE NECESSARY PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%

st = cputime;
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Appendix B. MATLAB Codes 127

iter = 1;
n100 = max([n,100]);
n50000 = max([n,50000]);
tol2 = 1e-08;
mxv = zeros(1,maxit); % pre-allocate memory for output vectors
mnv = zeros(1,maxit);
flagstep = zeros(1,maxit);
lamhist = zeros(1,maxit);
mvarerrhist = zeros(1,maxit); improv = zeros(1,maxit);

%%%%%%%%%%%%%%%%% INITIALIZE CHOLESKY FACTOR %%%%%%%%%%%%%%%%%%%%%%%%%%%

upos = find(u > 0);
lupos = length(upos);
A = spdiags(sqrt(u(upos)),0,lupos,lupos)*X(:,upos)’; % A’A = M := XUX’
[Q,R] = qr(A,0);
factor = 1; % M = factor^-1 * R’ * R

% Draw the current ellipse if n = 2.

if (n == 2),
pause on;
clf;
radii = .02*ones(1,m);
ellipse(radii,radii,zeros(1,m),X(1,:),X(2,:),’k’,100);
hold on;
C = ’r’;
M = X(:,upos)*spdiags(u(upos),0,lupos,lupos)*X(:,upos)’;
[V,D] = eig(M);
phi = atan(V(2,1)/V(1,1));
aa = sqrt(2*D(1,1)); bb = sqrt(2*D(2,2));
ellipse(aa,bb,phi,0,0,C,100);
pause;

end;

%%%%%%%%%%%%%%%%%%%%%%%% INITIALIZE VARIANCES %%%%%%%%%%%%%%%%%%%%%%%%%%%%

RX = R’ \ X; % RX = R^{-T} X
var = sum(RX .* RX,1); % var(i) = x_i^T M^{-1} x_i

% maxvar is the maximum variance.

[maxvar,maxj] = max(var);

%%%%%%%%%%%%%%%%%% TRY ELIMINATING POINTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% act lists the mm non-eliminated columns of X,
% and XX is the corresponding submatrix.

act = 1:1:m;
XX = X;
mm = m; oldmm = m;

% Use the Harman-Pronzato test to see if columns of X can be eliminated.
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128 Appendix B. MATLAB Codes

ept = maxvar - n;
tresh = n * (1 + ept/2 - (ept*(4+ept-4/n))^.5/2);
e = find(var > tresh | u’ > tol2);
act = act(e);
XX = XX(:,e);
mm = length(e);

% If only n columns remain, recompute u and R.

if mm == n,
u = (1/n)*ones(n,1);
upos = find(u > tol2);
A = spdiags(sqrt(u),0,mm,mm) * XX’;
[Q,R] = qr(A,0);
factor = 1;
RX = R’ \ XX;
var = sum(RX .* RX,1);

else
var = var(e);
u = u(e)/sum(u(e));
upos = find(u > tol2);

end;
if print,

fprintf(’\n At iteration %6.0f’, iter-1);
fprintf(’, number of active points %5.0f \n’,length(act));

end;
oldmm = mm;

%%%%%%%%%%%%%%%%%%%% FIND "FURTHEST" AND "CLOSEST" POINTS %%%%%%%%%%%%%%%%

[maxvar,maxj] = max(var);
[minvar,ind] = min(var(upos)); minj = upos(ind); mnvup = minvar;

% minj has smallest variance among points with positive weight.

mxv(iter) = maxvar; mnv(iter) = minvar;
if KKY==1, fprintf(’\n Using KKY’); mnvup = n; end;

%%%%%%%%%%%%%%%%%%%%%%%%%%% START ITERATIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%

while ((maxvar > (1+tol)*n) || (mnvup < (1-tol)*n)) && (iter < maxit),

%%%%%%%%%%%%%%% SELECT THE COMPONENT TO INCREASE OR DECREASE %%%%%%%%%%%

if maxvar + mnvup > 2*n,
j = maxj;
mvar = maxvar;

else
j = minj;
mvar = mnvup;

end;

% Compute Mxj = M^{-1} x_j and recompute var(j).
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Appendix B. MATLAB Codes 129

flag_recompute = 0;
xj = XX(:,j);
Rxj = R’ \ xj;
Mxj = factor * (R \ Rxj);
mvarn = factor * (Rxj’ * Rxj);
mvarerror = abs(mvarn - mvar)/max([1,mvar]);
mvarerrhist(iter) = mvarerror;
if (mvarerror > tol2),

flag_recompute = 1;
end;
mvar = mvarn;

%%%%%% COMPUTE STEPSIZE LAM (MAY BE NEGATIVE), EPSILON, AND %%%%%%%%%%%
%%%%%% IMPROVEMENT IN LOGDET %%%%%%%%%%%

lam = (mvar - n) / ((n-1) * mvar);
ep = (mvar/n - 1);
uj = u(j);
lam = max(lam,-uj);
lamhist(iter) = lam; % record the stepsize taken
if lam < -u(j) + tol2, flagstep(iter) = 1; % drop step

elseif lam < 0, flagstep(iter) = 2; % decrease step
elseif u(j) < tol2, flagstep(iter) = 3; % add step
else flagstep(iter) = 4; % increase step

end

% Update u and make sure it stays nonnegative.

imp = log(1 + lam*mvar) - n * log(1 + lam);
uold = u;
u(j) = max(uj + lam,0); u = (1/(1 + lam)) * u;
upos = find(u > tol2);
if (print) && (iter > 1) && (iter-1 == floor((iter-1)/n100) * n100),

% Print statistics.

fprintf(’\n At iteration %6.0f, maxvar %9.5f’,iter-1,maxvar)
fprintf(’, minvar %9.5f’,minvar)

end;

%%%%%%%%% UPDATE (OR RECOMPUTE) CHOLESKY FACTOR AND VAR %%%%%%%%%%%%%%

if (iter > 1) && ((iter-1 == floor((iter-1)/n50000) * n50000) ...
|| (flag_recompute && print)),

upos = find(uold > 0);
lupos = length(upos);
M = XX(:,upos) * spdiags(uold(upos),0,lupos,lupos) * XX(:,upos)’;
normdiff = norm(factor*M - R’*R) / (factor*norm(M));
if (normdiff > tol2),

flag_recompute = 1;
end;
if (flag_recompute && print)

fprintf(’\n Relative error in mvar = %8.1e’, mvarerror);
fprintf(’ and in XUX’’ = %8.1e; reinverting \n’, normdiff);
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130 Appendix B. MATLAB Codes

end;
end;

if flag_recompute,
upos = find(u > 0);
lupos = length(upos);
A = spdiags(sqrt(u(upos)),0,lupos,lupos) * XX(:,upos)’;
[Q,R] = qr(A,0);
factor = 1;
RX = R’ \ XX;
var = sum(RX .* RX,1);

else

% Update factorizations.

[R,factor,down_err] = updateR(R,factor,xj,lam);
if down_err, fprintf(’\n Error in downdating Cholesky’); break; end;
mult = lam / (1 + lam*mvar);
var = updatevar(var,lam,mult,Mxj,XX);

end;

% Update maxvar.

[maxvar,maxj] = max(var);

% Use the Harman-Pronzato test to see if
% further columns can be eliminated.

if (iter > 1) && (iter-1 == floor((iter-1)/n100) * n100),
ept = maxvar - n;
tresh = n * (1 + ept/2 - (ept*(4+ept-4/n))^.5/2);
e = find(var > tresh | u’ > tol2);
if length(e) < mm,

act = act(e);
XX = XX(:,e);
mm = length(e);
if mm == n

u = (1/n)*ones(n,1);
uold = u;
upos = find(u > tol2);
A = spdiags(sqrt(u),0,mm,mm) * XX’;
[Q,R] = qr(A,0);
factor = 1;
RX = R’ \ XX;
var = sum(RX .* RX,1);
[maxvar,maxj] = max(var);

else
var = var(e);
u = u(e)/sum(u(e));
uold = uold(e)/sum(uold(e));
upos = find(u > tol2);
[maxvar,maxj] = max(var);

end;
if (print == 2) || (print && (mm < oldmm / 2)),
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Appendix B. MATLAB Codes 131

fprintf(’\n \n At iteration %6.0f’,iter - 1);
fprintf(’, number of active points %5.0f \n’,length(act));

end;
oldmm = mm;

end;
end;

% Update minvar, iteration statistics.

upos = find(u > 0);
[minvar,ind] = min(var(upos)); minj = upos(ind); mnvup = minvar;
iter = iter+1;
improv(iter) = imp;
mxv(iter) = maxvar;
mnv(iter) = minvar;
if KKY == 1, mnvup = n; end;

% Draw the current ellipse if n = 2.

if (n == 2),
if (C == ’r’), C = ’b’;

elseif (C == ’b’), C = ’g’;
elseif (C == ’g’), C = ’r’;

end;
M = XX*spdiags(u,0,mm,mm)*XX’;
[V,D] = eig(M);
phi = atan(V(2,1)/V(1,1));
aa = sqrt(2*D(1,1)); bb = sqrt(2*D(2,2));
ellipse(aa,bb,phi,0,0,C,100);
pause;

end;
end;

%%%%%%%%%%%%%%%% CALCULATE AND PRINT SOME OF THE OUTPUT VARIABLES %%%%%%%%%

% Put back eliminated entries.

mxv = mxv(1:iter); mnv = mnv(1:iter);
flagstep = flagstep(1:iter); improv = improv(1:iter);
lamhist = lamhist(1:iter);
uu = zeros(m,1); uu(act) = u; u = uu;
varr = -ones(m,1); varr(act) = var; var = varr;
iter = iter - 1;

if print,
for i=1:4, cases(i) = length(find(flagstep==i)); end
fu = find(u > 1e-12);
fprintf(’\n \n maxvar - n = %4.3e’, max(var) - n)
fprintf(’, n - minvar = %4.3e \n’, n - min(var(fu)));
fprintf(’\n Drop, decrease, add, increase cases: %6.0f’, cases(1));
fprintf(’%6.0f %6.0f %6.0f \n’,cases(2),cases(3),cases(4)),
fprintf(’\n Number of positive weights = %7.0f \n’, length(fu));
fprintf(’\n Number of iterations = %7.0f \n’, iter);
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132 Appendix B. MATLAB Codes

fprintf(’\n Time taken = %7.2f \n \n’, cputime - st);
end;

return;

Here is the code for generating an initial solution u as in Kumar and Yıldırım [56]:

function u = initwt(X,print)

% obtains the initial weights u using the Kumar-Yildirim algorithm,
% taking into account that X represents [X,-X].

if (nargin < 2), print = 0; end;
if print, st = cputime; end;
[n,m] = size(X);
u = zeros(m,1);
Q = eye(n);
d = Q(:,1);

% Q is an orthogonal matrix whose first j columns span the same space
% as the first j points chosen X(:,ind) (= (X(:,ind) - (-X(:,ind)))/2).

for j = 1:n,

% compute the maximizer of | d’*x | over the columns of X.

dX = abs(d’*X);
[maxdX,ind] = max(dX);
u(ind) = 1;
if j == n, break, end;

% update Q.

y = X(:,ind);
z = Q’*y;
if j > 1, z(1:j-1) = zeros(j-1,1); end;
zeta = norm(z); zj = z(j); if zj < 0, zeta = - zeta; end;
zj = zj + zeta; z(j) = zj;
Q = Q - (Q * z) * ((1/(zeta*zj)) * z’);
d = Q(:,j+1);

end;
u = u / n;
if print,

fprintf(’\n Initialization time = %5.2f \n’,cputime - st);
end;
return;

Here are codes to update the “variances”ωi (u) and the scaled Cholesky factorization
of X U X T after a rank-one update:

function var = updatevar(var,lam,mult,Mxj,XX);

% Updates the variances.
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Appendix B. MATLAB Codes 133

tmp = Mxj’ * XX;
var = (1 + lam) * (var - mult* (tmp.^2));
return;

function [R,factor,down_err] = updateR(R,factor,xj,lam);

% Updates the Cholesky factor R.

p = 0;
xx = sqrt(abs(lam)*factor) * xj;
if (lam > 0), R = cholupdate(R,xx,’+’);

else, [R,p] = cholupdate(R,xx,’-’);
end;
factor = factor * (1 + lam);
if (p>0), down_err = 1; else down_err = 0; end;
return;

Below is the code to generate a matrix X from the rotationally invariant Cauchy
distribution described in Section 3.8:

function X=rot_cauchy(n,m,rnd,a);

% Generates a rotated Cauchy-distributed n x m matrix with scale a.

if nargin < 3, rng(’default’); else, rng(rnd); end;
if nargin < 4, a = 1; end;
b=randn(m,1);
c=randn(m,1);
d=a*(b./c);
X = randn(n,m);
d = d ./ (sqrt(sum(X.^2,1)))’;
X = X*spdiags(d,0,m,m);
return;

And finally, here is the code for the minimum-area ellipsoidal cylinder problem (note
that the data is to be stored as X = [Z ;Y ], not [Y ;Z]):

function [u,R,factor,improv,mxv,mnv,flagstep,lamhist,var,time,iter]...
= minvolk(X,k,tol,KKY,maxit,print,u)

% Finds the ellipsoidal cylinder with minimal k-dimensional cross-sectional
% area containing the columns of X:=[Z;Y] with Z in R^(r*m)
% and Y in R^(k*m) using the Fedorov-Wynn-Frank-Wolfe method,
% with Wolfe-Atwood away steps if KKY = 0.
%
% The algorithm returns an ellipsoidal cylinder providing a
% (1+tol)n-rounding of the convex hull of the columns of X in n-space.
%
%%%%%%%%%%%%%%%%%%%% INPUT PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% X:=[Z;Y] where Z in R^(r*m) and Y in R^(k*m) is the input data set;
%
% k is the dimension of the space where the minimum-area cross-section
% is desired;
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134 Appendix B. MATLAB Codes

%
% tol is the tolerance (measure of duality gap), set to 10^-6 by default;
%
% KKY is:
% 0 (default) for the Wolfe-Atwood method using Wolfe’s away steps
% (sometimes decreasing the weights) with the Kumar-Yildirim start;
% 1 if using the Fedorov-Wynn-Frank-Wolfe algorithm
% (just increasing the weights) with the Khachiyan initialization;
% 2 for the Wolfe-Atwood method with the Khachiyan initialization;
%
% maxit is the maximum number of iterations, default value 100000;
%
% print is the desired level of printing (default 1); and
%
% u is the initial value for the weights (default as above).
%
%%%%%%%%%%%%%%%%%%%%% OUTPUT PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% u is the dual solution vector;
%
% R and factor are such that factor^-1/2 * R is the (upper
% triangular) Cholesky factor of the optimal
% M := XUX^T, and the trailing k x k submatrix Rbar
% of R and factor are such that factor^-1/2 * Rbar is the (upper
% triangular) Cholesky factor of the optimal
% K(u) := YUY^T-YUZ^T(ZUZ^T)^{-1}ZUY^T;
%
% improv(i) holds the improvement in obj. function value at iteration i;
%
% mxv(i) holds the maximum variance over all points at iteration i;
%
% mnv(i) holds the minimum variance over all points with positive
% weight at iteration i;
%
% flagstep(i) identifies the type of step taken at iteration i: 1(drop),
% 2(decrease), 3(add), and 4(increase);
%
% lamhist(i) holds the step length lam at iteration i;
%
% var gives the variances of all points w.r.t. the optimal u
% (var_i(u)=(y_i+Ez_i)^T K(u)^{-1} (y_i+Ez_i));
%
% iterno is the total number of iterations taken; and
%
% time is the total cputime spent in order to obtain the optimal solution.
%
% Calls initwt, updatevar, and updateR.

%%%%%%%%%%%%%%%%% INITIALIZE INPUT PARAMETERS IF NOT DEFINED %%%%%%%%%%%%

if (nargin < 2), error(’Please input X and k’); end
[n,m] = size(X);
if (nargin < 3), tol = 1e-06; end;
if (nargin < 4), KKY = 0; end;
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Appendix B. MATLAB Codes 135

if (nargin < 5), maxit = 100000; end;
if (nargin < 6), print = 1; end;
if print,

fprintf(’\n Dimension = %5.0f, Number of points = %5.0f’,n,m)
fprintf(’, Tolerance = %5.1e \n’,tol);
fprintf(’\n Dimension of y-space = %5.0f \n’,k);

end;
if (nargin < 7),

if (KKY >= 1),
u = (1/m) * ones(m,1);
fprintf(’\n Using Khachiyan initialization \n’);

else
u = initwt(X,print);

end;
end;

%%%%%%%%%%%%%%%%% INITIALIZE NECESSARY PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%

st = cputime;
r = n - k;
iter = 1;
n100 = max([n,100]);
n50000 = max([n,50000]);
ximult = 1;
gamma = 1000;
tol2 = 10^-8;
mxv = zeros(1,maxit); % pre-allocate memory for output vectors
mnv = zeros(1,maxit);
flagstep = zeros(1,maxit);
lamhist = zeros(1,maxit);
improv = zeros(1,maxit);

%%%%%%%%%%%%%%%%% PARTITION X INTO BLOCKS Y AND Z %%%%%%%%%%%%%%%%%%%%%%%

Z = X(1:r,:);

%Y = X(r+1:n,:); % Y is not used, but is helpful for explaining some
% computed quantities.

%%%%%%%%%%%%%%%%% INITIALIZE FACTORIZATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%

upos = find(u > 0);
lupos = length(upos);

% M = X(:,upos)*spdiags(u(upos),0,lupos,lupos)*X(:,upos)’;
% M = XUX’ (X * diag(u) * X’)

% MZZ = M(1:r,1:r); % MZZ = ZUZ’ (Z * diag(u) * Z’)
% M and MZZ are not used, but are
% helpful in explaining some
% computed quantities.

A = spdiags(sqrt(u(upos)),0,lupos,lupos)*X(:,upos)’; % A’A = M.
factor = 1;
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136 Appendix B. MATLAB Codes

[Q,R] = qr(A,0); % M = factor^-1 * R’ * R
RZ = R(1:r,1:r); % MZZ = factor^-1 * RZ’* RZ

%%%%%%%%%%%%%%%%%%%%%%%% INITIALIZE VARIANCES %%%%%%%%%%%%%%%%%%%%%%%%%%%%

RX = R’ \ X; % RX = R^-T * X;
RZZ = RZ’ \ Z; % RZZ = RZ^-T * Z

zeta = sum(RZZ .* RZZ,1); % zeta(i) = z_i’ * (ZUZ’)^-1 * z_i
xi = sum(RX .* RX,1); % xi(i) = x_i’ * (XUX^T)^-1 * x_i
var = xi - zeta; % var(i) = (y_i+Ez_i)’K(u)^{-1}(y_i+Ez_i)

%%%%%%%%%%%%%%%%%%%%%%%% FIND "FURTHEST" AND "CLOSEST" POINTS %%%%%%%%%%%%

upos = find(u > 0);
[maxvar,maxj] = max(var); % maxj has greatest variance among all points
[minvar,ind] = min(var(upos)); minj = upos(ind); mnvup = minvar;
if (maxvar > k*(m-1)),

fprintf(’\n Initialization worse than Khachiyan’’s’);
fprintf(’, maxvar = %5.0f \n’,maxvar);

end;

% minj has smallest variance among points with positive weight

mxv(iter) = maxvar; mnv(iter) = minvar;

if (KKY == 1), fprintf(’\n Using KKY \n’); mnvup = k; end;

%%%%%%%%%%%%%%%%%%%%%%%%%%% START ITERATIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%

while ((maxvar > (1+tol) * k) || (mnvup < (1-tol) * k)) && (iter < maxit),

%%%%%%%%%%%%%%% SELECT THE COMPONENT TO INCREASE OR DECREASE %%%%%%%%%%%

if (maxvar + mnvup < 2*k),
j = minj;
mvar = mnvup;

else
j = maxj;
mvar = maxvar;

end
uj = u(j);

% Recompute var(j) and zeta(j).

flag_recompute = 0;
xj = X(:,j); zj = Z(:,j);
RZzj = RZ’ \ zj; % RZzj = RZ^-T * z(j)
MZZzj = factor * (RZ \ RZzj); % MZZzj = (ZUZ’)^{-1} * z(j)
Rxj = R’ \ xj;
Mxj = factor * (R \ Rxj); % Mxj = (XUX’)^{-1} * xj
zetaj = factor * (RZzj’ * RZzj); % zeta(j) recomputed
xij = factor * (Rxj’ * Rxj); % xi(j) recomputed
mvarn = xij - zetaj; % var(j) recomputed
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Appendix B. MATLAB Codes 137

mvarerror = abs(mvarn - mvar)/max([1,mvar]);
mvarerrhist(iter) = mvarerror;
if (mvarerror > tol2),

flag_recompute = 1;
end;
mvar = mvarn;

%%%%%% COMPUTE STEPSIZE LAM (MAY BE NEGATIVE) %%%%%%%%%%%

% The derivative of the improvement in the objective w.r.t lambda is a
% negative quantity times a * lambda^2 - 2 b * lambda +c with
% a, b, and c as below.

% We need to find the roots of this quadratic; different
% cases are investigated in the following if clauses such as no
% real roots, single root, double real roots.

b = - mvar / 2 + mvar / (2*k) - zetaj;
a = zetaj * (mvar + zetaj);
c = 1 - mvar / k;

% Identify various cases that can arise when solving the quadratic
% equation a*lambda^2 - 2b*lambda + c =0.

if (abs(a) < 1e-15),
if (abs(b) < 1e-15),

if (c < 0),
lam = 1e10;

else
lam = -uj;

end
else

lam = c / (2*b);
end

else
if b*b > a*c,

lam = c / (b - sqrt(b*b - a*c));
else

if c < 0, lam = 1e10; else lam = -uj; end
end

end
lam = max(lam,-uj);

% If the step would make ZUZ’ close to singular, take a slightly
% shorter step.

if (lam < -.9999*uj) & (1 + lam*zetaj < .0001),
fprintf(’\n Truncating step making ZUZ’’ singular \n’);
lam = -.9999*uj;

end

% If the increase in xi is too great compared to lam, reject the decrease
% or drop step, and perform an increase or add step

if (lam < 0) && (lam > -uj),
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ximultold = ximult;
ximult = (1+lam)*ximult / ((1+lam*xij)*(1-gamma*lam));

end;
if (lam == -uj),

ximultold = ximult;
ximult = (1+lam)*ximult / (1+lam*xij);

end;
if (lam > 0), ximult = (1+lam)*ximult / (1+gamma*lam); end;

if ximult > gamma,

fprintf(’\n Rejecting decrease or drop \n’);

% Reject drop or decrease step and do add or increase step

ximult = ximultold;
j = maxj;
mvar = maxvar;
uj = u(j);

% Recompute var(j) and zeta(j).

xj = X(:,j); zj = Z(:,j);
RZzj = RZ’ \ zj; % RZzj = RZ^-T * z(j)
MZZzj = factor * (RZ \ RZzj); % MZZzj = (ZUZ’)^{-1} * z(j)
Rxj = R’ \ xj;
Mxj = factor * (R \ Rxj);
zetaj = factor * (RZzj’ * RZzj); % zeta(j) recomputed
xij = factor * (Rxj’ * Rxj); % xi(j) recomputed
mvarn = xij - zetaj; % var(j) recomputed
mvarerror = abs(mvarn - mvar)/max([1,mvar]);
mvarerrhist(iter) = mvarerror;
if (mvarerror > 1e-08),

if print, mvarerror, end;
flag_recompute = 1;

end;
mvar = mvarn;

% The derivative of the improvement in the objective w.r.t lambda is a
% negative quantity times a * lambda^2 - 2 b * lambda +c with
% a, b, and c as below.

% We need to find the roots of this quadratic; different
% cases are investigated in the following if clauses such as no
% real roots, single root, double real roots.

b = - mvar / 2 + mvar / (2*k) - zetaj;
a = zetaj * (mvar + zetaj);
c = 1 - mvar / k;

% Identify various cases that can arise when solving the quadratic
% equation a*lambda^2 - 2b*lambda + c =0.

if (abs(a) < 1e-15),
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if (abs(b) < 1e-15),
if (c < 0),

lam = 1e10;
else

lam = -uj;
end

else
lam = c / (2*b);

end
else

if b*b > a*c,
lam = c / (b - sqrt(b*b - a*c));

else
if c < 0, lam = 1e10; else lam = -uj; end

end
end
lam = max(lam,-uj);
if (lam > 0), ximult = (1+lam)*ximult / (1+gamma*lam); end;

end
if (j == maxj) && (mvar < (1 + tol)*k),

fprintf(’\n Terminating with epsilon-primal feasible u \n’);
break;

end;
lamhist(iter)=lam; % record the stepsize taken

if lam < -uj+tol2, flagstep(iter) = 1; % drop steps
elseif lam < 0, flagstep(iter) = 2; % decrease steps
elseif uj < tol2, flagstep(iter) = 3; % add steps
else flagstep(iter) = 4; % increase steps
end

% Update u and make sure it stays nonnegative,

imp = - k*log(1 + lam) + log(1 + lam*mvar/(1 + lam*zetaj));
improv(iter) = imp;

uold = u;
u(j) = max(uj + lam,0); u = (1/(1 + lam)) * u;
if print && (iter > 1) && (iter-1 == floor((iter-1)/n100) * n100),

% Print statistics.

fprintf(’\n At iteration %6.0f, maxvar %9.5f’,iter-1,maxvar)
fprintf(’, minvar %9.5f’,minvar)

end;

%%%%%%%%% UPDATE (OR RECOMPUTE) CHOLESKY FACTOR AND VAR %%%%%%%%%%%%%%

if (iter > 1) && ((iter-1 == floor((iter-1)/n50000) * n50000) ...
|| (flag_recompute && print)),

upos = find(uold > 0);
lupos = length(upos);
if (k > 0.5*n),

M = X(:,upos) * spdiags(uold(upos),0,lupos,lupos) * X(:,upos)’;
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normdiff = norm(factor*M - R’*R) / (factor*norm(M));
else

MZZ = Z(:,upos) * spdiags(uold(upos),0,lupos,lupos) * Z(:,upos)’;
normdiff = norm(factor*MZZ - RZ’*RZ) / (factor*norm(MZZ));

end;
if (normdiff > tol2),

flag_recompute = 1;
end;
if (flag_recompute && print)

fprintf(’\n Relative error in mvar = %8.1e’, mvarerror);
fprintf(’ and in XUX’’ = %8.1e; reinverting \n’, normdiff);

end;
end;

if flag_recompute == 1,
upos = find(u > 0);
lupos = length(upos);
% M = X(:,upos) * spdiags(u(upos),0,lupos,lupos) * X(:,upos)’;

% M = XUX’ (X * diag(u) * X’)
A = spdiags(sqrt(u(upos)),0,lupos,lupos) * X(:,upos)’;
factor = 1;
[Q,R] = qr(A,0); % M = factor * R’ * R
RZ = R(1:r,1:r); % MZZ = factor * RZ’* RZ
RX = R’ \ X;
RZZ = RZ’ \ Z;
zeta = sum(RZZ .* RZZ,1);
xi = sum(RX .* RX,1);
var = xi - zeta;

else

% Update factorizations.

[R,factor,down_err] = updateR(R,factor,xj,lam);
if down_err, fprintf(’\n Error in downdating Cholesky \n’);break;end;
RZ = R(1:r,1:r); % MZZ = factor * RZ’* RZ
mu = lam / (1 + lam*zetaj);
zeta = updatevar(zeta,lam,mu,MZZzj,Z);
nu = lam / (1 + lam*xij);
xi = updatevar(xi,lam,nu,Mxj,X);
var = xi - zeta;

end

%%%%% FIND "FURTHEST" AND "CLOSEST" POINTS USING UPDATED VAR %%%%%%%%%%%

upos = find(u > tol2);
[maxvar,maxj] = max(var);
[minvar,ind] = min(var(upos)); minj = upos(ind); mnvup = minvar;
iter = iter + 1;
mxv(iter) = maxvar;
mnv(iter) = minvar;
if (KKY == 1), mnvup = k; end;

end
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%%%%%%%%%%%%%%%%% CALCULATE AND PRINT SOME OF THE OUTPUT VARIABLES %%%%%%%%%

mxv = mxv(1:iter); mnv = mnv(1:iter);
flagstep = flagstep(1:iter); improv=improv(1:iter);
lamhist = lamhist(1:iter);
iter = iter - 1;

if print,
fu = find(u > 1e-12); % indices of points with positive weight
for i=1:4, cases(i) = length(find(flagstep==i)); end
fprintf(’\n \n maxvar - k = %4.3e’, max(var) - k)
fprintf(’, k - minvar = %4.3e \n’, k - min(var(fu)));
fprintf(’\n Drop, decrease, add, increase cases: %6.0f’, cases(1));
fprintf(’%6.0f %6.0f %6.0f \n’,cases(2),cases(3),cases(4)),
fprintf(’\n Number of positive weights = %7.0f \n’, length(fu));
fprintf(’\n Number of iterations = %7.0f \n’, iter);
fprintf(’\n Time taken = %7.2f \n \n’, cputime - st);

end;

return
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