Conic set

1 Cone

A non-empty set SS is called a cone, if:

βˆ€x∈S,β€…β€ŠΞΈβ‰₯0β€…β€Šβ€…β€Šβ†’β€…β€Šβ€…β€ŠΞΈx∈S \forall x \in S, \; \theta \ge 0 \;\; \rightarrow \;\; \theta x \in S

Figure 1: Illustration of a cone

2 Convex cone

The set SS is called a convex cone, if:

βˆ€x1,x2∈S,β€…β€ŠΞΈ1,ΞΈ2β‰₯0β€…β€Šβ€…β€Šβ†’β€…β€Šβ€…β€ŠΞΈ1x1+ΞΈ2x2∈S \forall x_1, x_2 \in S, \; \theta_1, \theta_2 \ge 0 \;\; \rightarrow \;\; \theta_1 x_1 + \theta_2 x_2 \in S

Figure 2: Illustration of a convex cone
Example
  • Rn\mathbb{R}^n
  • Affine sets, containing 00
  • Ray
  • S+n\mathbf{S}^n_+ - the set of symmetric positive semi-definite matrices