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MINIMA OF FUNCTIONS OF SEVERAL VARIABLES WITH 

INEQUALITIES AS SI.UE CONDITIONS 

l~ Introduction. The problem of determining necessary 

conditions and sufficient conditions for a relative minimum of a 

tunction f(x1 ,x2 , ••• ,Xn) in the class of points x = (x1 ,Xa•···•XU> 
•atisf'yj.ng the equations g.., (x) = 0 ( !0( = 1,2, ••• ,m), where the 

;functions f and g ... have cont1nuous derivatives of' at least the 

second order, has·been satisfactorily treated [1]*. ~s paper 

proposes to take up the corresponding problem in the class of 

po1nts · x satisfying the 1nequal1 t1es 

(l) > g 0( (x) • 0 («= l,2, ••• ,m), 

where m may be less than, equal to, or greater .than n. 

We shall be interested in a min1m1zing point x0 at whiCh 

all the functions g.., vanish. The reason we l1mit our attention 

i;o this case is that if f(x0 ) -= mini.:artlm and, say, g 1 (x0 ) > 0 then 

by continuity g1 (x) ~ 0 for all x sufficiently close to xo and 

.hence the concn tion g1 (x) ~ 0 puts no restriction on the problem 

•o far as the theory of relative minima is concerned. Hence1'orth 

-:1%1. thie paper whenever we state •:t(xO) is a minimum• or ll,xo is a 

11linim1zing point• we assmne that g..(xO) = 0 for every ""- • 

~umbers in brackets refer to the list of references at the end of the paper. 

-1-
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We shall not limit ourselves to the case when f and g..: 

are of class c•. In Sections 3 and 4 we consider the minimum 

problem under the assumption the.t the functions f and s~ are 

merely .of class C' near a point x = x0 , However in Sections 5 

and 6 we do restrict attention to the case when the functions are 

of class c•. Section 2 will deal with some properties of linear 

inequalities. 

We shall have occasion to use all the results in the first 

part of Bliss's paper [l} and tor convenience we list them here. 

They are concerned with the problem of minimizing f(x) in the class 

of points x satisfying equations 

h..., (x) = 0 (..:= 1,2, ••• ,m < n), 

and may be compared with the results obtained in this paper. One 

needs only continuous first derivativesfor Theorem 1:1 and con-

tinuous second derivatives for the other theorems. 

T.HEORElil 1:1. ! ~ necessar;y condition!.£!: f(:xo) _:!:£be 

!. minimum !,! ~ ~ ~ constants "/.0 , 1. ..._ not ~ ~ ~ 

~ ~ derivatives H~ of ~ function 

all vanish ,!! xo. 

LEMMA 1:1. g II h«Xj_ (x0 ) II ~ rank m, ~ ~ every 

!2.! of constants "t i (1 = 1,2, ••• ,n) satisfyj_ng ~ equations 

~ ~ ~ ~ ~(t) having continuous ~derivatives 

~ t = 0, satisfying the equations hoc. [x.(t)] = 0, and~ that 

~(0) = ~o, 
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THEOREM 1:2. I1' ll h"":lli. (:xO) II has rank m ~ 1'(x0 ) !.!. ~ 

minimum ~ ~ condition 

~~for every set ~i satisfying h ""'"1 (:x0 ) "Ci = 0, ~ 

li = f + ;t .... h-. is the function formed with~ unique~ of 

multipliers "/.0 = 1, 't 01. belongil!S .!£ :z:0 • 

Our final excerpt from Bliss's paper is a sufficiency 

theorem. 

TEEORID! 1:3. If !: point :xo has !: ~~multipliers 'to :::: 1, 

t..: !£!: 'IYhich ~ function H = f + i-. h cc. satisfies the conditions 

!££_ all ~ '1i satisfying ~ equations 

then f{xo) is !: minimum. 

2, Preliminary theorems £!! linear inequalities. To intro

duce the important theorem which is about to follow we consider 

the system of linear inequalities 

{2) 

+ .A.J.nlln ~ 0 

+ Aenun ~ 0 

in which the A1 s are real constants, If for every solution u of 

(2) the inequality 

(2') 
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is satisfied, then the inequality (2 1 ) is called a consequence of 

the system of inequalities (2). Farkas, in his paper [4}, proved 

the following theorem. (See also Corollary l, p. 47 of Dines and 

McCoy (:S]) • 

THEOREM 2:1. It (2Y) !_!.!consequence of (2) ~ ~ 

~!!££-negative constants C.,.. ~ that 

The solution (u1 ,u2 ,o•••Un) = (0,0, ••• ,0) will be called 

a trivial solution of (2). We note that the theorem does not 

&ssume tr~t there necessarily exists a non-trivial solution of (2). 

We make an inductive proof. If n = 1 the conclusion is 

readily verified. We suppose the theorem true for n-1 variables 

u 1 ,u2••··•Un-1 and make the proof for n variables. If t s 0 

then the conclusion is obvious. Hence we assume some ~ is differ

ent from zero and, for convenience, let An ' 0. Solving 

~ = A1 u1 + A2ua + ••• + AnUn for Un we obtain Un = J.. ~ l:..fA1 u 1 + An Ant 
+ An-1 un-1 ] which we substitute in~· The result is 

(3) L:t = A1:!.U1 + • • • + A1 n-:a.un-1 + ~ ~- !!_n(A1 u 1 + •• • + An-1 un-1 ]~ 0. 

If the coefficient of ~ is different from zero divide both sides 

of {3) by l!:;_nl and obtain an inequality ~ ~ 0 in which the 

eoefficient of ~ is tl. Since L1 is a positive multiple of Lj_ we 

can replace the latter by Li in (2). This we do and, to simplify 

notation, drop the bar over~· With this understanding the system 

(2) can be rewritten as 

L" = ~ + pl. ;r; o, Li:a = ~ + P:a > 0, r.,_r= ~ + Pr ~ o, il. = ..... , 
(4) Lh' =§-~ + NJ. > o, Lj:a =-~+ N:a > o, Ljs E -~ +lis > 0, = ... , 

~1 ZJ. > o, Lk:a Z:a > o, Lkt > 0, - = - = ... , !!! Zt 
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-5-

where r + s + t = m and the P~, Ps, ••• , N~, Ns, ••• , Z1 , Zs, 

are linear forms in u1 , u2, ••• , Un-~· If we consider (4) as a 

system of inequalities with independent variables u 2 , ••• ,~_1 , f 
then from the fact that (2') is a consequence of (2) it follows 

that 

is a consequence of {4). 

There is at least one linear form in (u1 ,us•···•Un-1 .~) of 

the type displayed in the first line of (4). For, if this were 

not the case then (u1 ,u2 , ••• ,un_1 ,~) = (0,0, ••• ,0,-1) would be a 

solution of (4) in contradiction to (4 1 }. We may also assume that 

no one of the P 1 s is identically zero, since if for example P1 = 0 

then~~ ~1 and the conclusion would hold. By adding each in

equality in the first line of (4) to each inequality in the second 

line we obtain 

Lj_l. .. II + p1 ;: o, e • G I Lj_ = ~ + p :::- 0 
r r-

Li:t + Lh = P1 + N1 ;: o, • 0 0' Lj_J. + Ljs = P1 + Ns ~ 0 

Li2 + Lh E Ps + ll1 > 0, ~2 + Lj 8 E P2+ N8 
> 0 = • e • J = (5) ... 

L1r + Lh == Pr+ N1 > o, ~r+ Ljs = Pr+N8 ~ 0 e • • I 

LJc1= zl. ~ o, ~t= > • • 41, Zt = O • 

For each solution (u .. , ••• •Un-l.1~)t~f (5) we must have 

For, let there be a solution with~< 0. Then every P is positive 

and we may suppose, for convenience, that Pl. > 0 is the smallest 

P. Pu~ting ~=-Pl. we still have a solution of (5). But by 
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substituting P1 = -~ in the second line of {5) we see that the 

latter solution is also a solution of (4), which is impossible by 

(4'). Hence (5') is a consequence of (5). 

We now consider the system of inequalities 

pl. a- o, ~ 0 0, Pr ~ 0 

pl. + N:~. ~ o. 9 • Q' pl. + N8 ~ 0 

(6) •• 0 
··~ 

Pr + N1 i: o, Pr + Ns > 0 Q • 0, = 
z1 ~ o, o o & 1 Zt ~ o. 

From the as~ption made above that no P is identically zero we 

see that the system (6) contains at least one form which is not 

identically zero. If (6) has a non-trivial solution then some P 

must vanish for every solution. For, if this were not the case 
(1) (1} 

then for every P1 there would be a solution u 1 .····~-1 of (6) 

for which P1 > o. 
(1) (e) 

(::t} (e) 
The solution (u:u •• ·•Un-1 ) = (u1 + U1 + •••• 

••• ,un-:1. + Un .. 1 + ••• ) makes P1 > 0 for every 1 From 

t~~s we deduce that {5} has a solution with ~ < 0 1 which is a 

contradiction of the fact that (5') is a consequence of (5). 

Hence we may suppose that P1 = 0 for every solution of (6). It 

tollows that 

is a consequence of (6). In the case that (6) has no non-trivial 

solution then (6 1 ) is still a consequence of (6). By our induction 

assumption there exist non-negative constants a, b, c such that 

•P1 = al.P1 + •.• + ~Pr + c1 Z1 + ..• + ctZt 

+ bl.l.(Pl. + N1 ) + b1 2(Pl. + N2) + ••. + bl.s(P1 + Ns) 

+ br:~.(P~ + Nl.) + br2<Pr + N2) + ••• + brs<Pr + Ns)• 
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Employing the identities in (5) we find 

(l+al.+ ••• +ar)(J E (l+al.)L:1_1 + ••• +¥r + c:~.Lk1 + ••• + Ct~t 

+ bu (Lj_ 1 + LJJ.) + bl.a (Li 1 + Lj 2 ) + ••• + bu (L:L 1 + Lj 9 ) 

+ brl.<~r + Lj1) + ·•• + brs<Lir + Ljs)• 

which proves the theorem. 

We define u = (u1 ,u2 , ••• ,un) as a solution of the system 

(7) 

in case A«;iui ~ 0 is satisfied with the strict inequality holding 

tor at least one value of A • A set ot numbers will be called 

positive definite in case every number of the set is positive. 

LID~a 2~1. ~ necessary and sufficient condition ~ (7) 

~ .!!.£ solution u .!!!_ ~ ~ system 2!._ eg_ualities 

(8) (i= l,2, ••• ,n), 

~ ~ nositive definite solution v 

This is Theorem 12 of Dines and McCoy (3]. We employ this 

lemma to obtain the following modification of Theorem 2:1. 

THEOREM 2:2. If ~ ever_x !!£!!-trivial solution u of (2) 

g is~~ I>!!! ~u1>0 ~~~constants c.,.> 0 

~that 

ll ~matrix II Aoc, 1 11 has rank n ~ the converse is also ~· 

To prove the first part of the theorem we note that the 

system of inequalities 
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+ AmnUn > 10 

AnUn > 'o 

b£s no solution u. We use Lemma 2:1 with (7) replaced by this 

system and obtain positive constants C • such that 

(i = l, 2, ••• ,n), 

as desired. If' II A~ 1 tl has rank n then every non-trivial solution 

u of' Ace 1ui ~ 0 is also a solution of' A.,. 1Uj, > 10. Hence 

tec .. L .. >O. 

For simplicity we use the letter U to denote the class 

of al1 non-trivial solutions u of' (2}. 

~OREM 2:3. ~ statements: 

~.!!!. equivalent. 

(i) ~ exists a u satisfy:lpg A cd\i1. > 0 

!£!:_ every o< , 

(ii) U is n-dimensional, 

(iii) U !.!. ~ ~ !E!! !!2~linear -~ Acc illt 

vanishes fE!_ _!!! u belonging j:E U, 

The first statement (1) implies (11) for, by continuity, 

there is ann-dimensional neighborhood of u which belongs to u. 
~e statement (11i) follows from (ii) since if we suppose, for 

example, tPAt A~1 Ui = 0 for all u belonging to U then obviously 

U could not contain n linearly independent vectors u and hence could 

not be n-dimensional. To prove (iii) implies (i} we notice that 

there are solutions ut1 ! u< 2 ! ... , u(m) of (2) such that 
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.A.:1.1. Ui ( :1. ) > 0 

AeiUi (e) > 0 

00~ ••• OO!i 

Hence we need only set~= u1(:1.)+ u1 (e)+ ••• + ~(m}. 
For the next theorem we need to introduce the notion of 

X-rank of a matrix, an integral valued function of a matrix analo

gous to ordinary rank. But first some preliminary remarks are 

necessary. Suppose 

is an mxn matrix whose elements Aj_j are all real •. The matr1.x.mis 

said to be I-definite ~ respect to ~ given column in case the 

elements of that column are all positive, or are all negative• 

lnwill be called !-definite in case it contains at least one 

column with respect to which it is !-definite. 

If ~ is not !-definite with respect to the qth column we 

divide the elements of that column into 3 classes, 

r positive elements ~q (i "" i 1 ,i2•···•ir)• 

s negative eletnents .A.jq (j = jl.,j2•••••js)• 

t zero elements : Aka (k = k:~. ,k:a •••• •kt). 
From l'rl we derive the matrix-~ (q) as follows: 

To each pair of elements ~q• Ajq' the first positive arid 

the seccnd negative, corresponds one row of '11z 1 (q} given by 
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-.Lu-

lA:i.q .A.i1 I 
Ajq Aj:L I 

l~q '~q-11 ,~q ~q+11 
Ajq Ajq-1 1 .A.jq Ajq:t-1 1 

... 

To each zero element Akq corresponds the row 

The matrix ~(q) will consist of the rows so formed, the number 

of rows being rs + t. The order of the rows shall be fixed by 

the rule: (1) each row corresponding to a pair ~q• Ajq shall 

precede every Akq row; (2) of two ~q• Ajq rows that one shall 

precede whiCh has the smaller 1 or (in case the i•s are equal) 

that one which has the smaller ji (3) of two Akq rows that one 

shall precede which has the smaller k. 

Thus l'n1 (q) is well-defined if "m. is not !-definite with 

respect to its qth column. If ~is !-definite with respect to 

its qth column we define 1'11 ( q) as the matrix of 1 row and (n -1) 

columns all of whose elements are + 1 or - 1 according as the 

elements of the qth column of ~ are all positive or all negative. 

The matrixln 1 (q) will be called the !-complement of the qth 

column of m. and the set 

)n1 (n) will be called the 

{1)' (e) 
0J1 Of matriCeS m 1 I 1"1h I • o • I 

I-minors of (n- 1) columns of the 

matrix ~. We notice that if a matrix is I-definite then all its 

!-complements are likewise I-definite. 

Now we form the !-complements for each matrix ~1 (q)' and 

call the set OJ 2 of all such !-complements the I-minors of (n- 2J 

columns oflH. Continuing this process we obtain a finite sequence 

of sets "j:~.• tg 21 ••• I OJ n-1 where each matrix in cap is an I-minor 

of n- p columns of 'Yit. If we define ))'!. as its own I-minor of n 

columns then "J 0 = m and the set OJo + ll1 + ••• + <J n-1 of 

matrices constitute all the I-minors of ln. 
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We are ready to make the definition: A matrix Ynll be 

said to be of I-~~ if it possesses at least one I-::1i::1or of h 

columna which is I-definite, but does not possess any I-minor of 

h + 1 colum."ls which is I~defini te. If none of its I-minors are 

I-defini te then it will be said to be of I-~ £· 
In his paper [2] Dines proves the following theorem, t he 

proof of which we shall omit. 

THEOREM 2:4. ~ nece.ssary,: ~ sufficient condition for 

the existence£!~ solution u= (u~,u2•• · ••Un> of 

... 

3. Necessary conditions involving only first derivatives. 

We make some preliminary definitions. A solution A= ( A1 , A 11 , ••• ,An) 

of 

( oC= 1,2, ••• ,m), 

will be called an admissible direction if ). :l.s not the zero vector. 

A regular arc Xj_ (t} (1 = 1,2, ••• ,ni 0 ~ t ~ t 0 ), will be called 

admissible in case . g .. [x(t)] ~ 0 for every ex and t. A point x0 

is a ~ point in case the matrix 

has rank m. 

THEOREM 3:1. If f(xO) .!.!!. ~ rninilllUlli ~ ~ ~ 

multi plie rs to, t ... ~ ~ ~ such tha t t he derivatives Fxt of 

~ fu."iction 

229



F(x) = lof(x) + i.-. g.,. (:x:) 

ill~ at; xo. 

In the class of points (:x:,z) 

satisfying h"' (x,z) = g"" (x} ~ z.: "" 0 the point (:x:,z) = (:x:0 ,0} 

is a minimizing point for t. Hence, by Theorem 1:1, there exist 

constants ios t. not all zero such that the function H(:x,z) = 
f.ot + i .. ho: ""ioi: + t.-. g"' - i .. z; has H"i (xo,o) = o. It 

follows that F(x) "' iof + f..,._ g.,. has F~ (:x0 } "" 0, 

Ue note that if m < n the above proof of Theorem 3:1 is 

unnecessary. For 1 if x 0 is a minimizing point in the class of 

points satisfying g« (x) ~ 0 it certainly is a minimizing point 

in the class satisfying g..,. (x) = 0, and Theorem 1:1 can be ap

plied directly. 

If x 0 is a minimizing point for f which is normal then the 

multiplier /.0 is not zero and can be given the value one by 

d1 vicling each munber of the set lo• 't • by 'to and obtaining a 

new set 'to "' l, i"' which satisfies the conclusion of the theorem. 

Assume, then, that x 0 is a normal minimizing point and lo 1. 

If we suppose, for the moment, that the functions t and g~ have 

continuous second derivatives then by employing the necessary 

condition on the second derivatives of H(x,z) at the minimizing 

point (x,z) = (x0 ,0) ot f as given in Theorem 1:2 we can easily 

show that t ... ~ 0 ( « = 1,2, ••• ,m). For, by the theorem just 

referred to, the quadratic form 
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mu.st be non-negative :for all sets "/ 1 , "{a••••• ?n• !u l"'s••••• l"m 

:for which lig«xi(x0 ) = 0 and. "J"11 :Ta, ... ,.Tm is arbitrary. Set

ting every 'l and :r except r"' equal to zero and substituting 

in the quadratic :form we :find that t-.:;; o. 
However, in this section we shall make proo:fs of the non

positive character of the multipliers t .. which do not involve 

second derivatives, and the case when the minimizing point is 

normal will appear as a special instance (see the proof of the 

corollary to Theorem 5:1). 

We use Theorem 2;1 to obtain the following necessary 

condition. 

THEOREM 3:2. Suppose ~ f££ ~admissible direction 

~ ~ !.! an admissible .!!£.£ issuing from x 0 !!!. the direction A • 

~.!!:~necessary condition £2!: f(xO) ~~!:minimum!!. 

~there~ multipliers toe~ 0 ~that~ derivatives 

Fx1 !2!_ ~ function 

F = f + t-. g.,. 

!1! ~.!!:! xo. 

By a curve.Xi(t) (0 ~ t~ to) 1 11issu1ng from x 0 in the 

direction A 11 we mean, of course, that Xj_ (0) == Xi 0 and ~ 1 (0) = A i 

Consider an admissible direction A and the corresponding admissible 

curve ~(t) given in the hypothesis. Let ?'(t) = f[x(t)]. Since 

1"(0) ~ f(t) for 0 ~ t ~:.t01 it follows tha.t ?' (0) ~ o. But 

1'1 (O) = f.:!Cj_ (x0 ) ).i. Hence f'Xi (x0 ) A i ;:; o. Then f'xi (x0 ) u i ~ 0 

is a consequence of g., xi (x0 }U:t !1:' 0 ( oC = l, 2,.,. ,m), and by 

Theorem 2:1 there exist multipliers t"" ~ 0 such that fxi (x0 )~ + 

t.g.~(x0 )U:t = O. Thus fxi + t .. gO(Xi = 0 for every i, and the 

theorem is proved.. 
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The condition that there exist multipliers 't.c ~ 0 

satisfying the conclusion of Theorem 3:2 will be referred to as 

•the first necessary condition". For brevity, the property that 

for each admissible direction A there is an admissible arc 

issuing .from x 0 in the direction ).. Will be called property ~· 

One would naturally like to know what the probability is, 

roughly, that the functions- g.,. (x) will satisfy property Q, as 

well as some conditions on the functions g. which will ensure the 

satisfaction of Q. In order to partially answer these questions 

we shall briefly discuss one geometric interpretation of an 

admissible direction. 

'l'he tangent planes to-the surfaces g 111 (x) = 0 at their 

common point of intersection xo are given by 

( « = 1,2, ••• ,m). 

'l'he straight line issuing from xo in the admissible direction A 

is 

(9) 

Substituting the equations of Sin T"'(x) we .obtain T .. [x(t)];:: o. 
We conclude that the line S lies in the set of points x near x0 

satisfying '1'01( (x) ~ 0; and since the latter set, in a sense, 

approximates the set of points x near x0 satisfying g. (x) ~ o, 

if the functions g"' are regular enough, it seems that the satis

faction of property Q is not a great restriction on the functions 

go<,. In fact, the following corollary states a condition on g.,. 

which makes the line s an admissible arc. 

CoROLLARY. Suppose~~ every admissible direction A 
it is true that go<xt (xO) Ai = 0 implies ~ g <>lXiXk(x0 ) Ai Ak > o. 
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~if f(x0 ) = minimum the ~necessary condition~ satisfied. 

Consider any admissible direction A and the corresponding 

lineS given in (9). Define g .. (t) = g~[x(t)] («= 1,2 .... ,m; 

0 ;i t ~ t 0 ). We have dg.,. (t)/dt = g<><Xj_ Cx(t)]Xj_ 1 (t} = g.,.;xi [:x:(t)J A1 • 

Hence 

ag.,. (O) { o, , > 0 
dt "' g ..t Xj_ X I A i = • 

If~"' (0)/dt > 0 then g .. (t) is monotonically increasing near 

t = 0 and g .. {t) = goe[:x:(t)] ;;; g .. (:x:0 ) = 0. Hence S lies in the 

set of points x satisfying goc (x) ~ O. If c:lg_. (O)/dt = 0 then 

d7..,. {t)/dt2 = SocXj_xk(x(t)] ..\i ..\k and by hypothesis 

Therefore g~ (t) is monotonically increasing and, as before, 

satisfies ge<. [:x:(t)] ;:;; o. We have shown that with S the hypotheses 

or Theorem 3:2 are satisfied, and the conclusion follows. 

In Theorem 3:3 we obtain the same necessary condition that 

Theorem 3:2 yielded but under a different hypothesis. 

THEOREM 3:3. Suppose there ~ ~ admissible direction 

X. for Which g a<:X:i (;x0 ) Ai > 0 for every Q(. • ~ if' f(XO) = 

minimum~~ necessary condition!! satisfied. 

First we prove that if >.. is such that g "'~ (:x:0 ) ,\ i > 0 

for every ~ then f:x:i (:x:O) >.i ~ o. Let g represent any one of 

the g.,. and define, as before, 

g{t) = g{)t(t)]. l"(t} = ff;t(t)]' 

where x(t) represents the equations of the lineS in (9). Since 

ag(O}/dt = g:x:1 (x0 ) .A 1 > 0, g(t) is monotonically increasing, 

g[x(t)] ·~ g(:x:0 ) = O, and S is an admissible arc, Thus l"(O) ';i l"(t), 
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and consequently 

Now suppose t'i is an admissible direction. We define 

a family of directions 

where A :!.s given in the hypothesis of the theorem. Rewriting 

v 1 (s) = (1= s) 11 + Sf'i• it is clear that g~(:xO) v 1 (s) > 0 

for 0 ~ s < 1. From the first part of the proof, 

(0 ~ s < 1). 

so that 

Hence the inequality fx1 (x0 ) u 1 ~ 0 is a consequence of 

g""'Xi(x0 )u 1 ~ 0 ( « = 1,2, ••• ,m), and the theorem follows fro1:1 

Theorem 2;1. 

Suppose m = n and the determinant of II g 81 Xi (x0 ) II is 

different from zero, For this case we can write the first necessary 

condition in an entirely equivalent form as follows. 

COROLLAR1. Suppose m = n ~ determinant II g 81tXi (x0 ) II:/ o. 
~~necessary condition for f(xO) !2. ~!:minimum !.:!_ ~ 

( ~ = 1,2, ••• ,n), 

~ II Giec II ~~inverse ~ £!_ fl g ·~ (xO) II • 

The system of equations 
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has a solution u = A since determinant II g ue~ (:x0 ) II .f 0. Thus 

snd we can apply Theorem 3:3 to obtain the first necessary condition; 

that is, there exist multipliers i • ~ 0 such that 

Multiplying both aides of the last equation by G1 ~ and surnndng 

with respect to the inde:x 1, we obtain 

as desired. 

The problem of determining necessary and sufficient 

condi tiona for the existence of an admissible direction l satisfy

ing g "'~ (x0 ) "X 1 > 0 naturally arises in the consideration of 

Theorem 3:3, The question is answered by Theorems 2:3 and 2:4. 

In particular, the latter theorem provides a useful method for 

determining in a finite number of steps whether or not such an 

admissible vector A does eXist. 

It is easy to give an exSlllple in which the functions &.c 

satisfy neither the hypothesis of the corollary to Theorem 3:2 

nor the hypothesis of Theorem 3:3, but in vrhich the hypothesis of 

Theorem 3:2 is satisfied. Let 
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g1 (x,y) xe + (y-l)e- 1 ~ 0 

g,; (;x:,y) = 4 - [.x2 + (y -2) 2 ] ;;; 0 

dete~~ne the class of points (x,y) under consideration. At (0,0) 

we have 

S1X thy 

Sex Say 

S3x S3y 

= 
0 

0 

II .L 

-2 

4 

0 

The only admissible direction is (a,O) with a> 0. There is no 

solution of Socx(O,O). A 1 + Sex y(O,O) A e > 0 for all a( • Also 

g 2 xx(O,O)ae < 0 so that the hypothesis of the corollary to 

Theorem 3:2 is not satisfied. However, it is obvious that there 

is an admissible arc issuing from (0,0) in the direction (a,O). 

4. Sufficient conditions involVing only first derivatives. 

By a proper strengthening of the first necessary condition we can 

obtain a sufficiency theorem without resorting to second derivatives. 

THEOR.EM 4:1. SUppose m ~ n ~ II SoeXi (:z:OJ II !!!:!. ~
~ ~ n. g_ x0 !!. .! point satisfying g"' (xO) = 0 ~ ~ 

~~multipliers 't"' < 0 ~ ~ F = f + 't ... g .... B.!!, 

FXi (x0 ) = 0, ~ f(x0 ) !!. !. minii11Ulll. 

By ~aylor•s expansion formula, 

f(x) - f(x0 ) = fxi (x') '7i 

0 ~ g "'(x) = S«Xi_ (x.,.')"/ 1 (c< = 1,2, ••• ,m), 

for x near x0 &nd x satisfying go< (x) ~ o, where l 1 = ~ - Xi o, 
I 

x ~ 1 = xi 0 :+. 9.;;.("1. -.:. ·~ 0 ) • . :6y .hypothesis, 
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(~0} 

where c'"' = - t,.. > o. For convenience suppose 

g~: ~ xo, I ,f 0 • 

~(xo) 

We fix cn+1 •••• ,cm in (10) and solve for c1 , ••• ,cn as continuous 

functions of the coefficients g.,.x1 (x0 ) and fXj_(x0 ). Hence for 

A "'i sufficiently close to g o<xt (xO) and At sufficiently close to 

rx1 (x0 ) there e:r.ists a ·u..."llque solution C:,. > o, c2 > o, •..• em> o 

of 

(i = 1,2, ••• ,n). 

Hence for x sufficiently close to x 0 there exist constants 

C':~. > 0, ••• , ~ > 0 such that 

- i > c..cg«xi(x .... >"?1 = 0, 

We have a sufficiency theorem corresponding to the necessary 

condition in the corollary to Theorem 3:3. 

0 CROLLARY. Suppes e m = n ~ determinant It g o< Zj_ (x0 ) II ,J 0. 

We ~ II G1 ~ II ~ the inverse matrix of II g «Xi II • If x 0 is a 

EOinJ. satisfying g« (xo) = 0 ~ ~ 
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~ f(:x0 } .!,! .!!. minimum. 

We define i"" < 0 by the equation 

Multiplying both sides by g ..c:xj (:x0 ) and sUJT.ming with respect to 

the index el • we obtain 

and the conclusion follows from Theorem 4:1. 

The following sufficiency theorem is entirely equivalent 

to Theo.rem 4~ l. 

THEOREM 4:2. Suppose m ~ n ~ II g ·~ (x0 ) II has ~ n. 

ll ;xo t:l!..!!. point satisfying goe (x0 ) = 0 ~ ~ f::q_ (x0 ).A 1 > 0 

f2!: everz admissible direction ~ 1 then f(:x:0 ) is .!!. minimum. 

This result follows at once from Theorem 2:2 and Theorem 

4;1. 

5. ~ necessarz condition involving ~ derivatives. 

Suppes e 1' (x0 ) is a minimum, II g oe. xi (x0 ) !I h&./3 rank r, and for 

convenience the first r row vectors are linearly independent. We 

also suppose that there exist multipliers i ~ such that 

F"' f + t ... g.,. has F~ (x0 ) = 0 1 that is, 

(i = l,2, •••• n). 

Since all the row vectors are linear combinations of the first r 

we may suppose 'tr+1 = 0, ••• , ~ = O. In this form the multipliers 

i « are unique for, if i.C:. is any other set with tr-:1 = o, ••. , 
.... I .,..t: (..J -' .... 0 1 1- = 0 then 2..: ,.._ - 1-o< }goe:x:i(x ) = 0 and hence ioc = 'toe m oc=l 
( « = l,2, .•• ,r). 
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If the hypotheses of Theorem 3:3 are satisfied and 

11 g «Xi (x0 ) II has rank r = l or 2 we can show that there are 

respectively one or two linearly independent rows whose unique 

multipliers are non-p9sitive. It is obviously sufficient to 

prove the following proposition: If there exists an admissible 

direction A satisfying gtlCXj_(:x.0 )Ai > 0, every row of 

II ~C(Xi (:x0 ) II is a linear combination with non-negative coef'

ficients of some r linearly independent rows (r = 1 or 2). If' r= 1 

the proof .. is __ obvious. If r = 2 we make an inductive proof. The 

case m = 2 is clear •. We assume the proposition for m -1 and make 

the proof form. By our induction·assumption we may suppose that 

the first two rows of II S.c:Xj_ (x0 ) II are linearly independent and 

every other row, except possibly the last, is a linear combination 

with non-negative coefficients of' these two. F9r the last row 

we- have 

S81Xi + bge;xi + CSm;x1 = 0 (i = 1,2,. •. ,n), 

with (a,b,c) I (0,0,0). Hence ag1Xil 1 + bgz~~i + cSmx1:\i = O. 

The numbers a, b, o cannot all be of' the same sign. For, if they 

were then the last expression would be different from zero since 

g "'~ li > 0. Hence one of the three vectors is a linear combina

tion with non-negative coefficients of the aher two, and it follows 

that every row vector is a linear combination with non-negative 

coefficients of the same two. 

That one cannot hope to extend the above proposition to 

the case when r ~ 3 is shown by the following example. Let 

l 
0 
0 

l 

0 
1 
0 

l 
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rhe system of inequalities 

has a solution ():,,A.,, A!, A,.) = (1,1,1,1), If we take the linear 

combination of the rows with respective coefficients -1, -1, +1, 

+1 we obtain the zero vector. Since the rank of II g "'x (:x0 } II is 
i 

three any solution v of g "'~ v.,. = 0 is given by v = k(-1,-l,+l,+l). 

Hence no row can be a linear combination with positive coefficients 

of the other three rows, 

T.he next theorem gives a necessary condition involving 

the second derivatives of the functions f and g«. 

THEOREM 5:1. Suppose f{:x0 ) is ~minimum ~~exist 

-1 ... -1 - ( 0 rnultioliers 1-"" such~ .r· = f + ,_,..g.,. ~ F~ x } = 0. 

Suppose, further, ~ II g oc~ (x0 ) II ~ rank r < n ~ the first 

r ~ linear£[ independent. ~for every admissible direction 

7J satisfyin_g g« Xj_ (xO) ~ 1 = 0 ( oc = 1,2, ••• ,m), ~ ~ ~ 

is ~ admissible ~ x(t) of ~ C11 issuing~ x 0 in the 

direction '>7. 2 satisfying g. [:x(t)] = 0 ~ o< = 1,2, ••• ,r, it 

!.!~~ 

~ F B.~ ~ the unique ~ of multipliers t. <>< belonging 

to ~ ~ r ££!!! £!. II g OCXi_ (:x0 ) II • 

We notice that for any particular '2 satisfying g aCX:!. (x0 }~i = 0 

the selection of the r linearly independent rows that sr~ll satisfy 

with ~ the hypotheses of the theorem, depends upon ~ • In the 

st.atement of the theorem we have taken an '1 and renumbered the 

functions g"" so that the r linearly independent rows going With 

~ are the first r rows. 
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We have g""[x(t)] = 0 and hence g 0cx1Xj, 1 (t)- 0 for 

"'-=l 1 2, ••• ,r. Letl"(t) f[x(t)J. Then 

r 
l(t) = :f'x...[x(t)]Xj_ 1 (t)= (1'-:c.+ ~;(.,.g..cx.lxi 1 (t)=Fx [x(t)]Xj_ 1 (t}, 

--.. --... <~t.=l --.. 1 

? 1 (O) == FX:L [xo) 'Z 1 = 0, 

ut si nee f (x0 ) is a mininrum ?'( 0) ~ l"( t) • f 11 ( O)"" Fxp:k [x0 ] '[ i "l k ~ 0 • 

nd the theorem is proved. 

Theorem 5:1 can be applied in the particular case when 

xo) is a normal point. 

COROLLARY. Suppose x 0 is ~normal ,EOint. ~ necessarz 

onditions f.£!: .i'(x0 ) ~be .! minimum ~~the first necessary 

ondition be satisfied and that 

~ satisfied for every admissible direction '1. satisfying 

g "'x (xO) '?i = 0 ( « = 1,2, ••• ,m), 
i 

The first necessary condition is easily proved by means of 

heorem :3:3. For, since the rank of 11 go<Xj_ II is m there exists 

solution :X of go<Xi(x0 )A 1 = 1 ( o< = 1,2, ••• ,m). and hence a 

elution Of g O(Xi (x0 ) X1 > 0. 

If the rank of llg ot~ (x0 ) II is m = n then the second 

ecessary condition in the corollary is vacuously satisfied since 

o "l eXists for which g u<Xi (x0 } "'li = 0. If m < n the second 

ecessary condition follows if we notice that Lemma 1:1 enables 

s to satisfy the hypotheses of Theorem 5:1. 

6. ~sufficiency theorem involving second derivatives. 

~rresponding to Theorem 1:3 we have the following sufficiency 

:1eorern. 
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THEOREM 6:1. g.!. point x 0 satisfy:!.ng g"' (xO) = o l::!.!!_ ~ 

~ ~ multipliers t 01 < 0 f.££ ~ the function F = f + t ... goc 

1tisfies 

~ ~ admissible directions 'l satisfy:!.ng 

g ex~ (xO) 'h ... o, 

~ :t'(xO) !! !!. minimum. 

The proof consists of verifying that the hypotheses of 

beorem 1:3 are satisfied for the problem of shewing that (x,z) = 
~o,o) is a minimizing point for f in the class of points (x,z) = 
K1 •···•Xn•z1 , ••• ,Zm) satisfying 

h 01 (x,z) = g 01 (x) - z.: = 0 (oc= l,2, ••• ,m). 

~t; H(x,z) =- f + toe hoc = F(x) - t., z:. Then 

:>nsider ElllY set (··-7 1 , j k) :! {0,0) (1 = 1,2, ••• ,n; k· = ]; 1 2, ••• ,m), 

11.ch that 

1at is, such that 

J k arb1 trary. 

1e quadratic form formed With the second derivatives of H is 

1.1 ch reduces to 
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ance (x0 1 0) is a minimizing point. It follows that (x0 } is a 

lnimizing point for the original problem. 

Under the assumption that the functions f and g;,have 

ontinuous derivatives of at least the second order, Theorem 4:1 

s an immediate corollary of Theorem 6:1. However, as observed 

e.t'ore, Theorem 4: l also hol-ds .t'or the case when :f and g oc. have 

ontinuous derivativesof only the first order. 
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