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MINIMA OF FUNCTIONS OF SEVERAL VARIABLES WITH
INEQUALITIES AS SIVDE CONDITIONS

1. Introduction. The problem of determining necessary
conditions and sufficient conditions for a relative minimum of a
function f(z,_,xz,o..,xn) in the class of points x = (xl,xg,.,.,xn)
nntisfying'the equations g (x) = 0 (x = 1,2,...;,m), where the
functions f and g. have continuous derivatives of at least the
second order, has been satisfactorily treated [1]‘”o This paper
proposes to take up the corresponding problem in the class of

points x satlsfylng the inequalities
n Eg(x):o (<= 1,2,...,m),

where m may be less than, equal to, or greater than n.

We shall be interested in a minimizing point x° at which
21l the functions g « vanish. The reason we limit our attention
o this case is that if £(x°) = minimum and, say, g;(x°) > O then
by continuity gy(x) 2 O for all x sufficiently close to x° and
hence the condition g, (x) 20 puts no restriction on the problem
80 far as the theory of relative minime is concerned. Henceforth
@An thie paper whenever we state "f£(x°) is a minimm" or ®x0 is s

winimizing point® we essume thet g (x°) = O for every « ,

*Numbers in brackets refer to the list of references at

the end of the paper.

=l
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We shall not limit ourselves to the case when f and g«
are of clasa C". In Sections 3 and 4 we consider the minimum
problem under ﬁhe assumption that the functions f and g. Aare
merely of class C! near a point x = x°, However in Sections 5
and 6 we do restrict attention to the case when the functions are
of class C"™., Section 2 will deal with some properties of linear
inequalities.

We shall have occasion to use all the results in the first
part of Bliss's paper [1l] and for convenience we 1list them here.
They are concerned with the problem of minimizing f(x) in the class
of points x satisfying equations

he(x) = 0 (x= 1,2,,..,m< n),

and may be compared with the results obtained in this paper. One
needs only continuous first derivatives for Theorem 1l:1 and con-
tinuous second derivatives for the other theorems.

THECREM 1:1. A first necessary condition for f£(xo) to be

a minimum is that there exist constants Xo, X not all zero such

that the derivatives Hx1 of the function

H=Iof+1.¢hu

all vanish at xo.

LEMMA 1:1. If llh,,(xi(x°)ll has rank m, then for every

set of constants M1 (L =1,2,...;,n) satisfying the equations

h‘ x_l(x") '11 =0

there exists a curve xi(t) having continuous second derivatives

near t = 0, satisfying the equations h, [x(t)] = 0, and such that

x;(0) = x4°, x,'(0) = 7,.
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THEOREM 1:2. If Hh,‘x_i(xO)ll has renk m and f(x°) is 2

minirmm then the condition

Hx'ixk(xo) M1k zo0

must hold for every set mn 4 satisfying h,(xi(x") Yy = 0, where

H=f+ Lxhea 13 the function formed with the unique set of

multipliers Zo = 1, X« belonging to xO.
Our final excerpt from Bliss's paper is a sufficiency

theorem.
TEEOREM 1:3, If a point x© bas a set of multipliers Yo = 1,

;{q‘ for which the function H = f + Y« h o« satisfies the conditions

Hxi(;@) = 0, Hzixk(xﬂ“zi?zk >0

for all sets *r“_ satisfying the equations

h -(x.l(xo’ "(1 = 0,

then f£(x°) is a minimum.

2. Preliminary theorems on linear inequalities. To intro-

duce the important theorem which 1s about to follow we consider

the system of linear inequalities

Ly 2 Ajquy 4 AjgeUz + ceo + A;nun : 0
{2) Le = AgiUy + Azalp + coo + Agpup 2 O
Ly S Amay + AmeUz + oo + Agpup 2 O,

in which the A's are real constants. If for every solution u of

(2) the inequality

(21) 0= Auy + Azug + ... 4 AU 2O
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is satisfied, then the inequality (2') is called =a consequence of
the system of inequalities (2). Farkas, in his paper [4], proved
the following theorem. (See also Corollary 1, p. 47 of Dines and
McCoy [3]1). ' }

THEOREM 2:1. If (2°') is a consequence of (2) then there

sxist non-negative constants C, such that

= CyLy 4 Celig + o00 + Cplis

The solution (uj;,ugsoce-sipn) = (0,05...,0) will be called
a trivial solution of (2). We note that the theorem does not
assume that there necessarily exists a non-trivial solution of (2).
We make an inductive proof. If n ='l the conclusion is
readily verified. We suppose the theorem true for n=1 varisbles
U3 ,Uzse.ssUpn.y and meke the proof for n varisbles. If § = 0
then the conclusion 1s obvious. Hence we assume some 44 is differ-
ent from zero and, for convenience, let Ay # O. Solving
® = Ajuy, + Agus + oo + Apu, for u, we obtain u, = i& - %;[Alul +

sao An-iunull which we substitute in L;j. The result is
(3) Ly Afaty + cvo+ AyneqUney + 210 -A_EB[Au +oaet ,u-]zo,
Ly auy an-aln-y + == ) el Lt Ap=yUn=y

If the coefficient of § is different from zero divide both sides
of (3) by |£3.‘.| and obtain an inequality I, 2 O in which the
coefficient of § 1s 41. Since Ei is a positive multiple of Ly we
can replace the latter by fi in (2). This we do and, to simplify

notation, drop the bar over Li‘ With this understanding the system

(2) can be rewritten as

b"'Pl go: Li

Li, o=0+p20, ..., Li, =d+pr. 20,

() Lj-=d+mZo, Ly, =-d+M20, ..., Lj,=-0+x 20,
= > =

Iy, = Z, 50, Ly = 2220, ..., Ly, = 24 2 0,
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where r + s + ¢

@5

= m and the Plg Pz, eeoy Nl’ Nz, s 00y Zl, Zz, cee

are linear forms in W;, Ugs -ees Upe,. If We consider (4) as a

system of inequalities with independent variables UzseeosWyogs @

then from the fact that (2') is a consequence of (2) it follows

that

{47)

L]
1\
o

is a consequence of {4).

There is at least one linear form in (u;,Ugs..ssUpwysP) Of

the type displayed in the first line of (4). For, if this were

not the case then (U;,ues.-.sUpnmys®) = (0,0,...,0,=1) would be a

golution of (4)

in contradiction to (4'), We may also assume that

no one of the P's is identlcally zero, since if for example P; = O

then § = Ly, and
equeallty in- the

line we obtain

Li,
Li; + le

Ly

(5) =t L3y

Lir + le
Lk,

the conclusion would hold. By adding each in-

first line of (4) to each inequality in the second

EP+2 20, oouy LirE@+Pr2°
ZE P +Ny 2 05 e0os Ly, + Lj, S P+ Ng 2 0
S Pa+Ny 20, vooy Ly, +Lj S Pe+Ng 20
SPr+Ny 2 0, oy Dy + Lig = PpNg 20
s 2:20, ..., Iy, S 2z, 2 O.

For each solution (uz,...,up_y6)of (5) we must heve

(5)

b2 o.

For, let there be a solution with § < O. Then every P is positive

and we may suppose, for convenience, that P, > 0 is the smallest

P. Putting § =

=P, we still have a solution of (5). But by
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substituting P, = =0 in the second line of (5) we see that the
latter solution is also a solution of (4), which is impossible by
{4'). Hence (5') is a consequence of (5).

We now consider the system of inequalities

Py 20, oo P,Z 0
Py + Ny 2 05 ceo, Py +Ng2 O
{6) oes ces N
Pp+ Ny 20, ooy Pn+ Ng2
Zy 205 ooy Z, 2 0.

¥From the sssumption made above that no P is identically zero we
sse that the system (6) contsins at leest one form which is not
identically zero., If (6) has a non-trivial solution then some P

zmst venish for every solution. For, if this were not the case

then for every P4y there would be a solution u1(12°"’un£i) of (6)
for which P4 > 0. The solution (u1v-~‘»“n-;) = (ul(;) + u1(2)+..°,

(2) (=)

osssUnay * Upay ‘+ s0») makes Pi > 0 for every 41 = 1,2,...5r. From
this we deduce that (5) has a solution with § < O, which is a
contradiction of the fact that (5') is a consequence of (5),

Hence we may suppose that P, = O for every solution of (6). It
follows that

(6') -Pl : (0]

is o consequence of (6). In the case that (6) has no non-trivial
solution then (6%') is still a consequence of (6). By our induction

assumption there exist non-negative constants a, b, ¢ such that

=Py = 8Py + «.. + anPr + €12; + ... + Ct2¢

+ b12(Py + N1) + by2(Py + Na) + ... + byg(Py + Ng)

e see see cee

+ bpy (Pr + Ny) + bpg(Pp + Nz) + ... + brg(P. + Ng).
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Employing the identities in (5) we find

1

(A+ar+ coodap)® = (Loay)ly +oeotraply + Caly+ oo + ol
+ bn(Lil-o- le) +b1,a(L--1_1 + sz)+ seat bzs(Id.:."‘ Ljs)

+ bpy(Dy, + L) + .00 * brs(Lir + Ly )s
which proves the theorem.
We define u = (uj;,uzs.<.sup) as a solution of the system

(7) Ag 4wy >10

in case Ay 31y 2 O 1s sabtisfied with the strict inequality holding
for at least one value of &, A set of numbers will be called

positive definite in case every number of the set is positive.

LEMMA 231. A necessary and sufficient condition that (7)

admit no solution w is that the system of equalities

(8) Ay 1¥x =0 (1 =1,2,...,n),

admit a positive definite solution v = (vl,vg,...,vm)o

This is Theorem 12 of Dines and McCoy [3]. We employ this
lemma to obtain the following modification of Theorem 2:1.

THECREM 2:2. If for every non-trivial solution u of (2)

1t is true that = A;u,>0 then there exist constents Co > O

such that
O = CaLy + Cale + ... + Cply.

If the matrix || A-&i" has rank n then the converse is also true.

To prove the first part of the theorem we note that the
system of inequalities
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AzsUy + Ajela + eoo + Agpun > 'O

Ag,Uy + AmgUs + ooo + Agpup > 'O
3

- Alu;_ o= Azug > o060 = Anugl> 0

has no solution u. We use Lemma 2:1 with (7) replaced by this

aystem and obtain positive constants C 4 such that

Co By = B4 =0 (1 =1,2,...,0),

as desired. If llA, 4!l has rank n then every non-trivial solution
n of Ayify = O 1s also a solution of A, uy > ‘0, Hence
P2 C L« > 0.
For simplicity we use the letter U to denote the class
of all non-trivial solutions u &f (2).

THEOREM 2:3. The statements:

(1) there exists a U satisfying A 3Ty > 0

for every «,
(1) U is n-dimensional,
(111) U is not null and po.linear form A juy
venishes for all u belonging to U,
are a2ll squivalent.
The first atatement (i) implies (ii) for, by continuity,
there is an n-dimensional neighborhood of W which belongs to U.
The statement (11i) follows from (i1i) since if we suppose, for
example, that A3 ugy = O for all u belonging to U then obviously
U could not contain n linearly independent vectors u and hence could

not be n-dimensional. To prove (iil) implies (i) we notice that
there are solutions u‘lf u(ag coey u(m) of (2) such that
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Au_ui(:') >0
Aaiui(e) >0
Amiui(_m? > 0.
(), (=) (m)

Hence we need only set wy = ug '+ Wy Tk eee vy

For the next theorem we need to introduce the notion of
I-rank of a matrix, an integral valued function of a matrix analo-
gous to ordinary rank. But first some preliminary remarks are

necessary. Supposse

Ayx Ay see  Ayp
IM = 0o s cee cee -a.l
Ay  Amg  eee  App

is an mxn matrix whose elements Aij are all real, ‘The matrix M is

gaid to be I-definite with respect to a given column in case the

elements of thet column are all positive, or are all negatives
"M will be called I=definite in cese it contains at least one
colum with respect to which it is I-definite.

If ™M is not I-definite with respect to the gth column we

divide the elements of that column into 3 classes,

r positive elements : Ay g (L =1;,1z,...,15)5
8 negative elements 3 Ajq (3= Jasdrseeeslg)s
t zero elements : Apg (k= lky,ke,eea,ky)e
From ™M we derive the matrix —ml(q) as follows:
To each pair of elements Aiq’ qu, the first positive and

the second negative, corresponds one row of ml(‘” given by
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A:l.q Asy

Aiq 452

Asq Asp

4iq 4jn

t

]Aiq,‘iq-z
s e
Ajq Ajgm

A-s,q Aiqﬂ-‘
Ajq Ajg

To each zero element Akq corresponds the row

Akl, Akan 23909 Akq.ll Akq+19 0009 Akna

The wmatrix ml(‘"*" will consist of the rows so formed; the number
of rows being rs+t. The order of the rows shall be fixed by
the rule: {l) each row corresponding to a pair Aiq’ qu shall
precede every Akq row; {(2) of two Aiq’ qu rows that one shall
precede which has the smaller i or (in case the i's are equal)
that one which has the smaller js; (3) of two Akq rows that one
shall precede which has the smaller k.

Thus ‘m;("-) is well-defined if MM is not I-definite with
respect to its gth column, If MWiis I-definite with respect to
its gth column we define Wl(q) as the matrix of 1 row and (n -1)
columns all of whose elements are + 1 or = 1 according as the
elements of the gth column of M are all positive or all negative.
The matrix ml(*’) will be called the I-complement of the gth
column of M, and the set %" of matrices Tn,_(l)-, ml(é), vees
2 ‘™) will be called the I-minors of (n-1) columms of the
matriz M. We notice that if a matrix is I-definite then all its
I-complements are likewise I=-definite.

Now we form the I-complements for each matrix ml(q), and
call the set ng of all such I-complements the I-minors of (n-2)
columns of M. Continuing this process we obtain a finite sequence
of sets ‘}1: %(2, esey %n—:. where each matrix in (yp is an I-minor

of n=-p columns of ML, If we define Ml as 1ts own I-minor of n

columns then %o =M and the set %o + g,_ + ee. + ?n-l of

metrices constitute all the I-minors of M,
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We are ready to meke the definition: A matrix will be

gald to be of I~-ramk h if it possesses at least one I=-minor of h

columns which is I-definite, but does not possess any I-minor of
h+1l columns which is I-definite. If none of its I-minors are
I-definite then it will be sald to be of I-rank 0.

In his paper [2] Dines proves the following theorem; the
proof of which we shall omit.

THEOREM 2:4. A necesgsary and sufficlent condition for

the existence of a solution W = (Uy,Uzs«..slly) of

A0y + Ajels + ses + Agpiln > O
oeoe aeo osa LN ]

Amay + AmeuUs + oo + Appmln > 0

is that the I-rank of A _ ;] be greater than zero.

3. Necessary conditions involving only first derivatives.

We meke some preliminary definitions. A solution A= (A3, Agssse,Ap)
of

quifxo)z\iio (“= 1,2,...,m),

will be called an admissible direction if A 41s not the zero vector.

A regular are xy(t) (1 =1,2,...,03 O S48 to), will be called
admissible in cese g, [x(t)] 2 O for every « and t. A point x°
is a normal point in case the matrix

n sa‘xl(xO)l

has rank n.

THEOREM 3:1. If f(x°) i3 a minimunm then there exist

miltipliers ,l'o, Z'“ not all zero such that the derivatives in of

the function
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F(x) = Lof(x) + X 8 u (%)

all vanish at x9.

In the class of points (x;2) = (Xys:0.5XsZ2900002%p)
satisfying h (X,2) = g (X) = Za = O the point (x,2z) = (x°,0)
is a minimizing point for f. Hence, by Theorem 1l:1, there exist
constants Yo, Lo not all zero such that the function H(x,z) =
Yof + Tuhe = Yof 4+ Yu 8w = X o Zoc has Hxi(xo,O) =0, It
follows that F(x) = Zof + Y« g« has in(xo) = 0,

We note that if m < n the above proof of Theorem 3:1 is
unnecessary. For, if x° is a minimizing point in the class of
points satisfying g (x) 2 O it certainly is a minimizing point
in the class satisfying ge (x) = 0, and Theorem 1:1 can be ap=-
plied directly.

1f x° is a minimizing point for £ which is normal then the
multiplier 7—'0 is not zero and can be given the value one by
dividing each number of the set Xo, Xo by Yo and obtaining a
new set Zo = 1, ;l,x which satisfies the conclusion of the theorem,
Assume, then, that x° 1s a normal minimizing point and Zo = 1.

If we suppose; for the moment, that the functions f and g« have
contlmious second derivatives then by employing the necessary
condition on the second derivatives of H(x,z) at the minimi zing
point (x,z) = (x°,0) of £ as given in Theorem 1:2 we can easily
show that 1, S0 (e = 1,2,...,m). For, by the theorem just

referred to, the quadratic form

’717k3xixk(x°’0) +27 I‘Bxiz_(x°,0) + 3. Jgﬁz,(z,(x"’o) =

N1 7iFxy 2 (52 - 2 e
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rust be non-negative for all sets Ui, Yzseoes Pps J1s Jzseees I
for which "lig“xi(xO) =0 and Y35 Fesec.s Jp 15 arbitrary. Set-
ting every ’( and ¥ except Y, equal to zero and substituting
in the quadratic form we find that X o S O,

However, in this sectlion we shall make proofs of the non-
positive character of the multipliers i,‘ which do not involve
second derivatives, and the case when the minimizing point is
normal will appear as a special instance (see the proof of the
corollary to Theorem 5:1).

We use Theorem 2:1 to obtain the following necessary

condition.

THEOREM 3:2. Suppose that for each admissible direction

) there is an admissible arc issuing from x° in the direction A .

that there exist multipliers Z,‘ § 0 such that the derivatives

Fxy of the function
F=1f+ Zugu

2ll vanish at %0,

By & curve x4(t) (0 S t S to), "issuing from x° in the
direction A " we mean, of course, that x4 (0) = x3° and xiw(O) =Ay.
Consider an ;:.dmissible direction A and the corresponding admissible
curve x;(t) given in the hypothesis. Let F(t) = f£[x(t)]. Since
T(0) € F(t) for 0 S £.S.to, 1t follows that T'(0) 2 0. But
(o) = fxl(xo) A,. Hence fx_i(x°)A1 Z 0. Then fxi(x°)ui 2o
is & consequence of gdxi(x°)u1 20 (X =1,2,...,m), and by
Theorem 2:1 there exist multipliers X,‘ § O such that i‘xi(x°)u1 +
I“g‘xi(x°)u.l = 0. Thus fy, + I,‘g,‘xj‘ = 0 for every i, and the

theorem is proved,
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The condition that there exist multipliers X _ § o)
satisfying the conclusion of Theorem 3:2 will be referred to as
®the first necessary condition". For brevity, the property that
for each admissible direction A there is en admissible arc
issuing from x° in the direction A will be called property Q.

One would naturally like to know what the probability is,
roughly, that the functions g. (x) will satisfy property g, as
wéll as some conditions on the functions ge which will ensure the
gsatisfaction of Q. In order to partially answer these questions
we shall briefly discuss one geometric interpretation of an
admissible direction. v

The tengent planes to-the surfaces g, (x) = O at their

common point of intersection x° are given by

To(x) T gox (x0)(xgy = x°) =0 (o= 1,2,5..,m),

The stralght line issuing from x° in the admissible direction A
is

A
A

(9) S: ox(e) = At xy® (0= t= tos 4 = 1,2,...5m),

Substituting the equations of S in T, (x) we obtain T, [x(t)] 0.

nv

We conclude that the line S lies in the set of points x near x°
satisfying T, (x) 2 0; and since the latter set, in a sense,
approximates thevset of points x near x° satisfying g« (x) 2 0,
if the functions g, are regular enough, it seems that the satis-
faction of property @ is not a great restriction on the functions
8« ¢« In fact, the following corollary states a condition on -9
which makes the line S an admissible arc.

CUROLLARY. Suppose that for every admissible direction A

it is true that ga‘x_l(x") Ay = O implies that 8 axyxy (X°) Ay Ay > 0.
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Then if £(x°) = minimum the first necessary condition is satisfied.

Consider any admissible direction A and the corresponding
1line S given in (9). Define g, (t) = g [x(t)] (x=1,2,...,m;
0SS t,). We have dg, (t)/dt = g,‘xil;x(t)]xi’(t) = Bocxy [x(£)] Ay

Hence

dg . (0) _
at - Baxy

(x°) A N 2 o.

If dg o (0)/dt > O then E . (t) is monotonically increasing near
t=08nd g, (t) =g,x(%)] Z Be (x°) = O. Hence S lies in the
set of points x satisfying g, (x) 2 0. If dg. (0)/dt = O then
4%E  (£)/86® = B oxyx, [2(£)] Ay Ay and by hypothestis

a=g « (0)
Therefore E,‘(t) is monotonically increasing and, as before;
satisfies g, [x(t)] 2 0. We have shown that with S the hypotheses
of Theorem 3:2 are satisfied, and the conclusion follows,

In Theorem 3:3 we obtaln the same necessary condition that

Theorem 3:2 yielded but under a different hypothesis.

THEOREM 3:3. Suppose there exists an admissible direction

X\ for which gdxi(x") Xi > 0 for every « . Then if £(x%) =

minimum the first necessary condition is satisfied.

First we prove that if A 1is such that gwmx (x°) Ay > 0
for every « then fx,(x°) Ai Z 0. Let g represent any one of

the g_ and define, as before,

8(t) = glx(t)l, T(t) = £x(%)1,

where x(t) represents the equations of the line S in (9). Since
dg(0)/dat = gxi(x°) Ay > 0, g(t) is monotonically increasing,

glx(t)]1-2 g(x°) = 0, and S is an admissible arc. Thus F(0) = T(t),
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and consequently

ar(o) _
TQT(;"L" fxi(x") Ay 2 o.

Now suppose Mg is an admissible direction. We define
a family of directions

where A is given in the hypothesis of the theorem. Rewriting
;Ji(s) = (1= a)xi + 3My5 1t is clear that gxi(x°) vy(s) >0
for 0SS s< 1. From the first part of the proof,

22, (x°) ¥,y (8) 20 (0Ss<1),

80 that

Lin £y, (x°) 2 (8) = £ (=°) g zo.
Hence the inequality fxi(x°) ujy i 0 is a comsequence of
g“x‘l(x°)ui 20 (% =1,2...,m), and the theorem follows from
Theorem 2:1.

Suppose m = n and the determinant of |l g.x1(x°)l| is
different from zero. For this case we can write the first necessary
condition in an entlirely equivalent form as follows.

COROLLARY. Suppose m = n and determinant Il gux, (x°) 11 # 0.

Then a necessary condition for f£(x°) to be 2 minimum is that

Ly (x°)Gy 20 (o= 1,2,...,10),

is the inverse matrix of Ns,,xi(x°)ll .

The system of equations
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Baxy (=) = 1

Snxi(z")ui =1
has a solution u = A since determinant II g“xi(xo)ll # 0. Thus
E“q(xo)xi > 0,

and we can apply Theorem 3:3 to obtain the first necessary condition;

that is, there exist multipliers Y« S O such that

£z, (x%) = = i.g.ui(:f)-

Multiplying both sides of the last equation by Giﬂ and surming
with respect %o the index i, we obtain

ij_(xo)Gip = = iq : 0,

as degired.

The problem of determlning necessary and sufficient
conditions for the existence of an admissible direction A satisfy-
ing g,‘xi(x°);; > O naturally arises in the consideration of
Theorem 3:3. The question is answered by Theorems 2:3 and 2:4.

In particular, the latter theorem provides a useful method for
determining in a finite number of steps whether or not such an
sdmissible vector A does exist.

It is easy to give an example in which the functions Ex
satisfy neither the hypothesis of the corollary to Theorem 3:2

nor the hypothesis of Theorem 3:3, but in which the hypothesis of
Theorem 3:2 is satisfied. Let
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SJ.(XJY) = xz + ('.7-1)2 -1 : o]
ga(x,y) = 4 - X+ (y=2)"1 2 0

X
g5(xy) = 3" +x2 0

determine the class of points (x,y) under consideration. At (0,0)

we have

&ix &y 0 =2
82x 8y = Y 4
8zx 83y I+ 0

The only admissible direction is (a,0) with a > O. There is no
solution of g (0,01 A; + 8, 5(0,0)Ae > 0 for all . Also
ggm(o,ma‘ < 0 so that the hypothesis of the corollary to
Theorem 3:2 1s not satisfied. However, it is obvious that there

13 an admissible arc issuing from (0,0) in the direction (2,0).

4, Sufficient conditions involving only first derivatives.

By a proper strengthening of the first necessary condition we can
obtain a sufficiency theorem without resorting to second derivatives.
THEGREM 4:1. Suppose m 2 n and Il gy, (x°) I has mex-

irmm rank n. If x° 1s a point satisfying g, (x°) = O for which

there exist multipliers Z,‘ < 0 such that F = f + Zu 8o has
Fyx, (x°) = O, then £(x°) is a minimum.

By Teylort!s expansion formula,

£(x) - £(x°) = fxi(x')v1
Oé Sq(x) = Se(xi(xq')?i (= 1,2,...,m),
for x neer x° and x satisfying g_ (x) = O, where ML= - x°,

t ~-
Xy = X0 4 Og(xy -.%°%). By hypothesis,
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181%, (X°) + CoBaxy(x°) + «.. + cpgpy (x°) = £y (x°)

(10) .

°

C181xp (X0) + Cagaxp(x®) + o0 + cmgmxn(x°) = fxn(x")
where ¢, = = L, > 0, For convenlence suppose

8a1xy (xo) XS gm1(§c°)
£ 0.
|8z, (x°) ..o gnxn(x")
We fix e, 500058y in {10) and solve for ¢3,...,c, as continuocus
functions of the coefficients gaxi(x") and fxi(x")a Hence for

A 4 sufficiently clese to g“xi(xo) end Ay sufficiently close to
fxi(xo) there exists a unigue solubion ¢y > 0, Tz > 0 .a0p Cy >0

of

Cxhyg = Ay (L = 1,2,...50)

Hence for x sufficiently close to x° there exist constants

Ty > O, .0es5 Oy > O such thet

E“g,(xi(z;) = (%),

£
*y

£(x) = £(x°) = £x, (') Yy = Ty B uxy (%) 74 2 0,
end £(x°) is a minimmm,

We have a sufficiency theorem corresponding to the necessary

condition in the corollary to Theorem 3:3.

CROLLARY. Suppose m = n and determinant || ga(xi(x°)ll £ 0.

We let H Gy, Il be the inverse matrix of || Bxxyll o If x° is a

point satisfying g, (x0) = O such that

f;x* (x°)G4,, >0 { = 1.9 n)

237



then £(x°) is g pinimum.

We define X o < O by the equation
Ty (200035 = = Lo o

Multiplying both sides by S«xj (x°) and summing with respect to

the index et , we obtain

ij(xo) = = zugaxj(xo),

and the conclusion follows from Theorem 4:1,
The following sufficiency theorem is entirely equivalent
to Theorem 4:1.

THEOREM 4:2. Suppose m 2 n and i g,‘x_l(:x°)i| has rank n.

—

f x9 13 a point satisfying g (x°) = O such that fxi(x°)A1 >0

Hy

or every edmissible direction A , then £(x°) is a minimum,

|

This result follows at once from Theorem 2:2 and Theorem

5. A necessary condition involving second derivatives.

Buppose £(x°) is a minimum, || 8ocxy (X°) il has rank r, and for
converience the first r row vectors are linearly independent. We
also suppose that there exist mltipliers Y o such that

P=7f+ X, g, has Fx,(x°) = 0, that is,

rx_l(x") + I“gqxi(x") =0 (1 = 1,2,....n),

Since 2ll the row vectors are linear combinations of the first r

we may suppose Xn,. = 0, ..., Xy = O. In this form the multipliers

< 1
Y« are unique for, if Zo: is any other set with 11,_1_1 = 05 seo

ER_
L[}

!
O then “E_El Ko = X )8 otxy (x°) = O and hence 1o = Lo
(= 1,2,...,r).
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If the hypotheses of Theorem 3:3 are satisfied and
H gdxi(x°)!l has renk r = 1 or 2 we can show that there are
respectively one or two linearly independent rows whose unique
miltipliers are non-positive. It is obviously sufficient to
prove the following proposition: If there exists an admissible
direction A satisfying g“xi(x")xi > 0, every row of
t 5&(:\:1('-"0)“ is a linear combination with non-negative coef=
ric;,ients of some r linearly independent rows (r = 1 or 2), If r=1
the proof 1s obvious. If r = 2 we make an inductive proof. The
case m = 2 1s clear. We assume the proposition for m=1 and make
the proof for m. By our induction assumption we may suppose that
the first two rows of i g“xi(x")ll are linearly independent and
every other row, except possibly the last, is a linear combination
with non-negative coefficients of these two. For the last row

we have

881xy + DBexy + C8mxy = o (L = 1,2,..051m),

with (a,b,c) # (0,0,0). Hence 331113‘1 + bgg,i'}"i + °3mx1i1 = 0,
The numbers a; b, ¢ cannot all be of the same sign. For, 1f they
were then the last expression would be different from zero since
5“31:\1 > 0. Hence one of the three vectors is a linear combina-
tion with non-negative coefficients of the adther two, and it follows
that every row vector is a linear combination with non-negeative
coefficients of the same two.
That one cannot hope to extend the ebove proposition to

the case when r 2 3 is shown by the following example. Let

g oy (=N =

H OOW
H OOWM
H OKr O

= O O
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The system of inequalities
g uxxy (x°) Ay >0

has a solution (A, A,, A,5 A,) = (1,1,1,1). If we take the linear
combination of the rows with respective coefficients -1, =1, &l,
+1 we obtain the zero vector. Since the rank of || gdxi(x")ll is
three any solution v of g“xiv, = 0 is given by v = k(-1,-1,+1,+1).
Hence 10 row can be a linear combination wlth positive coefficients
of the other three rows.

The next theorem gives a necessary condition involving

the second derivatives of the functions f and g, -

TEEOREM 5:1. Suppose f£(x°) is a minimum and there exist

multipliers X, such that F = f + X g has Fx,

Suppose, further, that i g“xi(xo)ll has rank r < n with the first

(xo) = 0,

v rows linearlv independent. Then for every admissible direction

7 satisfying g,‘xi(x")?zi =0 (&=1,2,...,m), such that there

is an admissidle arc x(t) of class C" issuing from x° in the

direction 7 end satisfying g, [x(t)j =0 for o= 1,2,...,r, it

is true that

inxk(xo) 721 71{ 2 0,

where F is formed with the unique set of multipliers Z“ belonging

to the first r rows of |l gﬂxi(xo)ll .
_—— . o ~
We notice that for any particular 7 satisfying g,(Xi(x ),Zi =0
the selection of the r linearly independent rows that shall satisfy
with N the hypotheses of the theorem, depénds upon 7 . In the
statement of the theorem we have taken an M and renumbered the

functions g, 80 that the r linearly independent rows going with

’l are the first r rows,
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We have g, [x(t)]
A= 1;2,...50. Let T(t)

0 and hence S«xixi'(t) = O for
£Ix(t)]. Then

r
1(8) = Oy x()]xy " (0) = (fxi“*a(%li“8uxi)xii(t)=in[X(t)]Xi'(‘G)s
T1(0) = Fg, [x0) %4 = O.

at since £(x°) iz a minimm F(0) S F(t), FM(0)=Fyx [x°1 937y = O,
nd the theorem is proved.

Theorem 5:1 can be applied in the particular case when
x0) 18 a normal point.

COROLLARY. Suppose x% is a normal point. Then necessary

onditions for £(x°) to be a minimum are that the first necessary

ondition be satisfied and that

(o] >
inzk(x )71 e = 0

e satisfied for every admissible direction 7 satisfying

st‘,\‘(xi(xﬁ')v1 =0 (&= 1,2,...,m),

The first necessary condition is sasily proved by meeans of
heorem 3:3. For, since the rank of |l g“xill is m there exists
solution A of gou,:i(x“‘)x1 =1 (& =1,2,0..,m), and hence a

. (J

olution of 5@(2:1(" )-Xi > 0,

If the rank of Ilguxi(x°)|l is m = n then the second
ecessary condition in the corollary is vacuously satisfied since

s o =
o 7 exists for which gdxi(x )-71 = 0. If m< n the second
ecessary condition follows if we notice that Lemma 1l:1 enables

s to satisfy the hypotheses of Theorem 5:1.

6. A sufficiency theorem involving second derivatives.

orresponding to Theorem 1:3 we have the following sufficiency

neoreme.
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THEOREM 6:1. If a point x° satisfying g, (x°) = O has a

3t of multipliers X“ < O for which the function F = £ + Yo 8o
atisfies

0y — 0
Fxl(x }=0, inxk(x )"Zi’lk >0

or all admissible directions ? satisfying

8o(xi(xo) 7[1 = 0,

zen £{x°) 1s a minimum.
The proof consists of verifying that the hypotheses of

heorem 1:3 are satisfied for the problem of showing that (x,2z)

]

£9,0) is 2 minimizing point for f in the class of points (x,z)

KysoeesEpnsZasecesdy) satisfying
Do (%52) = g x(X) = Zer = 0 (= 1,2,...,m).
st H{x,2) = f + Yyho = F(x) = YuZere Then
0o

Dnsj'der any Set ('711 jk) ¥ (O,O) (1 = 1,2,...,1’:'3 k = 1‘,2,...,!11),
ach that

hexxi(x"’o) '71 + h.‘zk(x°.0)3k =0 (=x=1,2,...5m),

1at is, such that

Bouxy (X°)My = 0, J, erbitrary,

16 quadratic form formed with the second derivatives of H is

Hxixk(xo’o)‘?i’zk + 2Hxizk(x°,0) 7[1315 + HZkZZ(xolo)J kJI

1ich reduces to
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2
Fryxe(%°) 947y = 2%, Ty > 0.

snce (x°,0) is a minimizing point. It follows that (x°) is a
inimizing point for the original problem.

Under the assumption that the functions f and g have
ontinuous derivatives of at least the second order, Theorem 4:1
s an immediate corollary of Theorem 6:1. However, as observed
efore, Theorem 4:1 also helds for the case when f and g, have

ontinuous derivativesof only the first order.
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