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When a parameter space has a certain underlying structure, the ordinary
gradient of a function does not represent its steepest direction, but the
natural gradient does. Information geometry is used for calculating the
natural gradients in the parameter space of perceptrons, the space of ma-
trices (for blind source separation), and the space of linear dynamical
systems (for blind source deconvolution). The dynamical behavior of
natural gradient online learning is analyzed and is proved to be Fisher
efficient, implying that it has asymptotically the same performance as the
optimal batch estimation of parameters. This suggests that the plateau
phenomenon, which appears in the backpropagation learning algorithm
of multilayer perceptrons, might disappear or might not be so serious
when the natural gradient is used. An adaptive method of updating the
learning rate is proposed and analyzed.

1 Introduction

The stochastic gradient method (Widrow, 1963; Amari, 1967; Tsypkin, 1973;
Rumelhart, Hinton, & Williams, 1986) is a popular learning method in the
general nonlinear optimization framework. The parameter space is not Eu-
clidean but has a Riemannian metric structure in many cases. In these cases,
the ordinary gradient does not give the steepest direction of a target func-
tion; rather, the steepest direction is given by the natural (or contravariant)
gradient. The Riemannian metric structures are introduced by means of
information geometry (Amari, 1985; Murray and Rice, 1993; Amari, 1997a;
Amari, Kurata, & Nagoska, 1992). This article gives the natural gradients ex-
plicitly in the case of the space of perceptrons for neural learning, the space
of matrices for blind source separation, and the space of linear dynamical
systems for blind multichannel source deconvolution. This is an extended
version of an earlier article (Amari, 1996), including new results.

How good is natural gradient learning compared to conventional gradi-
ent learning? The asymptotic behavior of online natural gradient learning
is studied for this purpose. Training examples can be used only once in on-
line learning when they appear. Therefore, the asymptotic performance of
online learning cannot be better than the optimal batch procedure where all
the examples can be reused again and again. However, we prove that natu-
ral gradient online learning gives the Fisher-efficient estimator in the sense

Neural Computation 10, 251–276 (1998) c© 1998 Massachusetts Institute of Technology



252 Shun-ichi Amari

of asymptotic statistics when the loss function is differentiable, so that it is
asymptotically equivalent to the optimal batch procedure (see also Amari,
1995; Opper, 1996). When the loss function is nondifferentiable, the accuracy
of asymptotic online learning is worse than batch learning by a factor of 2
(see, for example, Van den Broeck & Reimann, 1996). It was shown in Amari
et al. (1992) that the dynamic behavior of natural gradient in the Boltzmann
machine is excellent.

It is not easy to calculate the natural gradient explicitly in multilayer
perceptrons. However, a preliminary analysis (Yang & Amari, 1997), by us-
ing a simple model, shows that the performance of natural gradient learn-
ing is remarkably good, and it is sometimes free from being trapped in
plateaus, which give rise to slow convergence of the backpropagation learn-
ing method (Saad & Solla, 1995). This suggests that the Riemannian structure
might eliminate such plateaus or might make them not so serious.

Online learning is flexible, because it can track slow fluctuations of the
target. Such online dynamics were first analyzed in Amari (1967) and then
by many researchers recently. Sompolinsky, Barkai, and Seung (1995), and
Barkai, Seung, and Sompolinsky (1995) proposed an adaptive method of
adjusting the learning rate (see also Amari, 1967). We generalize their idea
and evaluate its performance based on the Riemannian metric of errors.

The article is organized as follows. The natural gradient is defined in
section 2. Section 3 formulates the natural gradient in various problems of
stochastic descent learning. Section 4 gives the statistical analysis of effi-
ciency of online learning, and section 5 is devoted to the problem of adap-
tive changes in the learning rate. Calculations of the Riemannian metric and
explicit forms of the natural gradients are given in sections 6, 7, and 8.

2 Natural Gradient

Let S = {w ∈ Rn} be a parameter space on which a function L(w) is defined.
When S is a Euclidean space with an orthonormal coordinate systemw, the
squared length of a small incremental vector dw connectingw andw+ dw
is given by

|dw|2 =
n∑

i=1

(dwi)
2,

where dwi are the components of dw. However, when the coordinate system
is nonorthonormal, the squared length is given by the quadratic form

|dw|2 =
∑

i,j

gij(w)dwidwj. (2.1)

When S is a curved manifold, there is no orthonormal linear coordinates,
and the length of dw is always written as in equation 2.1. Such a space is
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a Riemannian space. We show in later sections that parameter spaces of
neural networks have the Riemannian character. The n× n matrix G = (gij)

is called the Riemannian metric tensor, and it depends in general on w. It
reduces to

gij(w) = δij =
{

1, i = j,
0, i 6= j

in the Euclidean orthonormal case, so that G is the unit matrix I in this case.
The steepest descent direction of a function L(w) at w is defined by the

vector dw that minimizes L(w+ dw)where |dw| has a fixed length, that is,
under the constraint

|dw|2 = ε2 (2.2)

for a sufficiently small constant ε.

Theorem 1. The steepest descent direction of L(w) in a Riemannian space is
given by

−∇̃L(w) = −G−1(w)∇L(w) (2.3)

where G−1 = (gij) is the inverse of the metric G = (gij) and∇L is the conventional
gradient,

∇L(w) =
(
∂

∂w1
L(w), . . . ,

∂

∂wn
L(w)

)T

,

the superscript T denoting the transposition.

Proof. We put

dw = εa,

and search for the a that minimizes

L(w + dw) = L(w)+ ε∇L(w)Ta

under the constraint

|a|2 =
∑

gijaiaj = 1.

By the Lagrangean method, we have

∂

∂ai
{∇L(w)Ta− λaTGa} = 0.
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This gives

∇L(w) = 2λGa

or

a = 1
2λ

G−1∇L(w),

where λ is determined from the constraint.
We call

∇̃L(w) = G−1∇L(w)

the natural gradient of L in the Riemannian space. Thus, −∇̃L represents
the steepest descent direction of L. (If we use the tensorial notation, this is
nothing but the contravariant form of −∇L.) When the space is Euclidean
and the coordinate system is orthonormal, we have

∇̃L = ∇L. (2.4)

This suggests the natural gradient descent algorithm of the form

wt+1 = wt − ηt∇̃L(wt), (2.5)

where ηt is the learning rate that determines the step size.

3 Natural Gradient Learning

Let us consider an information source that generates a sequence of inde-
pendent random variables z1,z2, . . . ,zt, . . ., subject to the same probability
distribution q(z). The random signals zt are processed by a processor (like
a neural network) that has a set of adjustable parametersw. Let l(z,w) be a
loss function when signal z is processed by the processor whose parameter
isw. Then the risk function or the average loss is

L(w) = E[l(z,w)], (3.1)

where E denotes the expectation with respect to z. Learning is a procedure
to search for the optimalw∗ that minimizes L(w).

The stochastic gradient descent learning method can be formulated in
general as

wt+1 = wt − ηtC(wt)∇l(zt,wt), (3.2)
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where ηt is a learning rate that may depend on t and C(w) is a suitably
chosen positive definite matrix (see Amari, 1967). In the natural gradient
online learning method, it is proposed to put C(w) equal to G−1(w) when
the Riemannian structure is defined. We give a number of examples to be
studied in more detail.

3.1 Statistical Estimation of Probability Density Function. In the case
of statistical estimation, we assume a statistical model {p(z,w)}, and the
problem is to obtain the probability distribution p(z, ŵ) that approximates
the unknown density function q(z) in the best way—that is, to estimate the
true w or to obtain the optimal approximation w from the observed data.
A typical loss function is

l(z,w) = − log p(z,w). (3.3)

The expected loss is then given by

L(w) = −E[log p(z,w)]

= Eq

[
log

q(z)
p(z,w)

]
+HZ,

where HZ is the entropy of q(z) not depending onw. Hence, minimizing L
is equivalent to minimizing the Kullback-Leibler divergence

D[q(z) : p(z,w)] =
∫

q(z) log
q(z)

p(z,w)
dz (3.4)

of two probability distributions q(z) and p(z,w). When the true distribution
q(z) is written as q(z) = p(z,w∗), this is equivalent to obtain the maximum
likelihood estimator ŵ.

The Riemannian structure of the parameter space of a statistical model
is defined by the Fisher information (Rao, 1945; Amari, 1985)

gij(w) = E
[
∂ log p(x,w)

∂wi

∂ log p(x,w)
∂wj

]
(3.5)

in the component form. This is the only invariant metric to be given to
the statistical model (Chentsov, 1972; Campbell, 1985; Amari, 1985). The
learning equation (see equation 3.2) gives a sequential estimator ŵt.

3.2 Multilayer Neural Network. Let us consider a multilayer feedfor-
ward neural network specified by a vector parameterw = (w1, . . . ,wn)

T ∈
Rn. The parameter w is composed of modifiable connection weights and
thresholds. When input x is applied, the network processes it and calcu-
lates the outputs f (x,w). The input x is subject to an unknown probability
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distribution q(x). Let us consider a teacher network that, by receiving x,
generates the corresponding output y subject to a conditional probability
distribution q(y | x). The task is to obtain the optimal w∗ from examples
such that the student network approximates the behavior of the teacher.

Let us denote by l(x,w) a loss when input signal x is processed by a
network having parameterw. A typical loss is given,

l(x,y,w) = 1
2
|y − f (x,w)|2, (3.6)

where y is the output given by the teacher.
Let us consider a statistical model of neural networks such that its output

y is given by a noisy version of f (x,w),

y = f (x,w)+n, (3.7)

wheren is a multivariate gaussian noise with zero mean and unit covariance
matrix I. By putting z = (x,y), which is an input-output pair, the model
specifies the probability density of z as

p(z,w) = cq(x) exp
{
−1

2
|y − f (x,w)|2

}
, (3.8)

where c is a normalizing constant and the loss function (see equation 3.6) is
rewritten as

l(z,w) = const+ log q(x)− log p(z,w). (3.9)

Given a sequence of examples (x1,y1), . . . , (xt,yt), . . ., the natural gra-
dient online learning algorithm is written as

wt+1 = wt − ηt∇̃l(xt,yt,wt). (3.10)

Information geometry (Amari, 1985) shows that the Riemannian struc-
ture is given to the parameter space of multilayer networks by the Fisher
information matrix,

gij(w) = E
[
∂ log p(x,y;w)

∂wi

∂p(x,y;w)
∂wj

]
. (3.11)

We will show how to calculate G = (gij) and its inverse in a later section.

3.3 Blind Separation of Sources. Let us consider m signal sources that
produce m independent signals si(t), i = 1, . . . ,m, at discrete times t =
1, 2, . . .. We assume that si(t) are independent at different times and that the
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expectations of si are 0. Let r(s) be the joint probability density function of
s. Then it is written in the product form

r(s) =
m∏

i=1

r1(s1). (3.12)

Consider the case where we cannot have direct access to the source signals
s(t) but we can observe their m instantaneous mixtures x(t),

x(t) = As(t) (3.13)

or

xi(t) =
m∑

j=1

Aijsj(t),

where A = (Aij) is an m×m nonsingular mixing matrix that does not depend
on t, and x = (x1, . . . , xm)

T is the observed mixtures.
Blind source separation is the problem of recovering the original sig-

nals s(t), t = 1, 2, . . . from the observed signals x(t), t = 1, 2, . . . (Jutten &
Hérault, 1991). If we know A, this is trivial, because we have

s(t) = A−1x(t).

The “blind” implies that we do not know the mixing matrix A and the
probability distribution densities ri(si).

A typical algorithm to solve the problem is to transform x(t) into

y(t) =Wtx(t), (3.14)

where Wt is an estimate of A−1. It is modified by the following learning
equation:

Wt+1 =Wt − ηtF(xt,Wt). (3.15)

Here, F(x,W) is a special matrix function satisfying

E[F(x,W)] = 0 (3.16)

for any density functions r(s) in equation 3.12 when W = A−1. For Wt
of equation 3.15 to converge to A−1, equation 3.16 is necessary but not
sufficient, because the stability of the equilibrium is not considered here.

Let K(W) be an operator that maps a matrix to a matrix. Then

F̃(x,W) = K(W)F(x,W)
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satisfies equation 3.16 when F does. The equilibrium of F and F̃ is the same,
but their stability can be different. However, the natural gradient does not
alter the stability of an equilibrium, because G−1 is positive-definite.

Let l(x,W) be a loss function whose expectation

L(W) = E[l(x,W)]

is the target function minimized at W = A−1. A typical function F is obtained
by the gradient of l with respect to W,

F(x,W) = ∇l(x,W). (3.17)

Such an F is also obtained by heuristic arguments. Amari and Cardoso (in
press) gave the complete family of F satisfying equation 3.16 and elucidated
the statistical efficiency of related algorithms.

From the statistical point of view, the problem is to estimate W = A−1

from observed data x(1), . . . ,x(t). However, the probability density func-
tion of x is written as

pX(x;W, r) = |W|r(Wx), (3.18)

which is specified not only by W to be estimated but also by an unknown
function r of the form 3.12. Such a statistical model is said to be semipara-
metric and is a difficult problem to solve (Bickel, Klassen, Ritov, & Wellner,
1993), because it includes an unknown function of infinite degrees of free-
dom. However, we can apply the information-geometrical theory of esti-
mating functions (Amari & Kawanabe, 1997) to this problem.

When F is given by the gradient of a loss function (see equation 3.17),
where ∇ is the gradient ∂/∂W with respect to a matrix, the natural gradient
is given by

∇̃l = G−1 ◦ ∇l. (3.19)

Here, G is an operator transforming a matrix to a matrix so that it is an
m2×m2 matrix. G is the metric given to the space Gl(m) of all the nonsingular
m×m matrices. We give its explicit form in a later section based on the Lie
group structure. The inverse of G is also given explicitly. Another important
problem is the stability of the equilibrium of the learning dynamics. This has
recently been solved by using the Riemannian structure (Amari, Chen, &
Chichocki, in press; see also Cardoso & Laheld, 1996). The superefficiency
of some algorithms has been also proved in Amari (1997b) under certain
conditions.

3.4 Blind Source Deconvolution. When the original signals s(t) are
mixed not only instantaneously but also with past signals as well, the prob-
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lem is called blind source deconvolution or equalization. By introducing the
time delay operator z−1,

z−1s(t) = s(t− 1), (3.20)

we have a mixing matrix filterA denoted by

A(z) =
∞∑

k=0

Akz−k, (3.21)

where Ak are m×m matrices. The observed mixtures are

x(t) = A(z)s(t) =
∑

k

Aks(t− k). (3.22)

To recover the original independent sources, we use the finite impulse
response model

W (z) =
d∑

k=0

Wkz−1 (3.23)

of degree d. The original signals are recovered by

y(t) =W t(z)x(t), (3.24)

whereW t is adaptively modified by

W t+1(z) =W t(z)− ηt∇l{xt,xt−1, . . . ,W t(z)}. (3.25)

Here, l(xt,xt−1, . . . ,W ) is a loss function that includes some past signals.
We can summarize the past signals into a current state variable in the on-
line learning algorithm. Such a loss function is obtained by the maximum
entropy method (Bell & Sejnowski, 1995), independent component analysis
(Comon, 1994), or the statistical likelihood method.

In order to obtain the natural gradient learning algorithm

W t+1(z) =W t(z)− ηt∇̃l(xt,xt−1, . . . ,W t),

we need to define the Riemannian metric in the space of all the matrix
filters (multiterminal linear systems). Such a study was initiated by Amari
(1987). It is possible to define G and to obtain G−1 explicitly (see section 8).
A preliminary investigation into the performance of the natural gradient
learning algorithm has been undertaken by Douglas, Chichocki, and Amari
(1996) and Amari et al. (1997).
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4 Natural Gradient Gives Fisher-Efficient Online Learning
Algorithms

This section studies the accuracy of natural gradient learning from the statis-
tical point of view. A statistical estimator that gives asymptotically the best
result is said to be Fisher efficient. We prove that natural gradient learning
attains Fisher efficiency.

Let us consider multilayer perceptrons as an example. We study the case
of a realizable teacher, that is, the behavior of the teacher is given by q(y |
x) = p(y | x,w∗). Let DT = {(x1,y1), . . . , (xT,yT)} be T-independent
input-output examples generated by the teacher network having parameter
w∗. Then, minimizing the log loss,

l(x,y;w) = − log p(x,y;w),

over the training data DT is to obtain ŵT that minimizes the training error

Ltrain(w) =
1
T

T∑
t=1

l(xt,yt;w). (4.1)

This is equivalent to maximizing the likelihood
∏T

t=1 p(xt,yt;w). Hence,
ŵT is the maximum likelihood estimator. The Cramér-Rao theorem states
that the expected squared error of an unbiased estimator satisfies

E[(ŵT −w∗)(ŵT −w∗)T] ≥ 1
T

G−1, (4.2)

where the inequality holds in the sense of positive definiteness of matri-
ces. An estimator is said to be efficient or Fisher efficient when it satisfies
equation 4.2 with equality for large T. The maximum likelihood estimator is
Fisher efficient, implying that it is the best estimator attaining the Cramér-
Rao bound asymptotically,

lim
T→∞

TE[(ŵT −w∗)(ŵT −w∗)T] = G−1, (4.3)

where G−1 is the inverse of the Fisher information matrix G = (gij) defined
by equation 3.11.

Examples (x1,y1), (x2,y2) . . . are given one at a time in the case of online
learning. Let w̃t be an online estimator at time t. At the next time, t+ 1, the
estimator w̃t is modified to give a new estimator w̃t+1 based on the current
observation (xt,yt). The old observations (x1,y1), . . . , (xt−1,yt−1) cannot
be reused to obtain w̃t+1, so the learning rule is written as

w̃t+1 =m(xt,yt, w̃t).
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The process {w̃t} is Markovian. Whatever learning rule m is chosen, the
behavior of the estimator w̃t is never better than that of the optimal batch
estimator ŵt because of this restriction. The gradient online learning rule

w̃t+1 = w̃t − ηtC
∂l(xt,yt; w̃t)

∂w
,

was proposed where C is a positive-definite matrix, and its dynamical be-
havior was studied by Amari (1967) when the learning constant ηt = η is
fixed. Heskes and Kappen (1991) obtained similar results, which ignited re-
search into online learning. When ηt satisfies some condition, say, ηt = c/t,
for a positive constant c, the stochastic approximation guarantees that w̃t is
a consistent estimator converging to w∗. However, it is not Fisher efficient
in general.

There arises a question of whether there exists a learning rule that gives
an efficient estimator. If it exists, the asymptotic behavior of online learning
is equivalent to that of the best batch estimation method. This article answers
the question affirmatively, by giving an efficient online learning rule (see
Amari, 1995; see also Opper, 1996).

Let us consider the natural gradient learning rule,

w̃t+1 = w̃t − 1
t
∇̃l(xt,yt, w̃t). (4.4)

Theorem 2. Under the learning rule (see equation 4.4), the natural gradient
online estimator w̃t is Fisher efficient.

Proof. Let us denote the covariance matrix of estimator w̃t by

Ṽt+1 = E[(w̃t+1 −w∗)(w̃t+1 −w∗)T]. (4.5)

This shows the expectation of the squared error. We expand

∂l(xt,yt; w̃t)

∂w
= ∂l(xt,yt;w∗)

∂w
+ ∂

2l(xt,yt;w∗)
∂w∂w

(w̃t −w∗)
+O(|w̃t −w∗|2).

By subtractingw∗ from the both sides of equation 4.4 and taking the expec-
tation of the square of the both sides, we have

Ṽt+1 = Ṽt − 2
t

Ṽt + 1
t2 G−1 +O

(
1
t3

)
, (4.6)

where we used

E
[
∂l(xt,yt;w∗)

∂w

]
= 0, (4.7)
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E
[
∂2l(xt,yt;w∗)

∂w∂w

]
= G(w∗), (4.8)

G(w̃t) = G(w∗)+O
(

1
t

)
,

because w̃t converges to w∗ as guaranteed by stochastic approximation
under certain conditions (see Kushner & Clark, 1978). The solution of equa-
tion 4.6 is written asymptotically as

Ṽt = 1
t

G−1 +O
(

1
t2

)
,

proving the theorem.
The theory can be extended to be applicable to the unrealizable teacher

case, where

K(w) = E
[

∂2

∂w∂w
l(x,y;w)

]
(4.9)

should be used instead of G(w) in order to obtain the same efficient result
as the optimal batch procedure. This is locally equivalent to the Newton-
Raphson method. The results can be stated in terms of the generalization
error instead of the covariance of the estimator, and we can obtain more
universal results (see Amari, 1993; Amari & Murata, 1993).

Remark. In the cases of blind source separation and deconvolution, the
models are semiparametric, including the unknown function r (see equa-
tion 3.18). In such cases, the Cramér-Rao bound does not necessarily hold.
Therefore, Theorem 2 does not hold in these cases. It holds when we can
estimate the true r of the source probability density functions and use it to
define the loss function l(x,W). Otherwise equation 4.8 does not hold. The
stability of the true solution is not necessarily guaranteed either. Amari,
Chen, & Cichocki (in press) have analyzed this situation and proposed a
universal method of attaining the stability of the equilibrium solution.

5 Adaptive Learning Constant

The dynamical behavior of the learning rule (see equation 3.2) was studied in
Amari (1967) when ηt is a small constant η. In this case,wt fluctuates around
the (local) optimal value w∗ for large t. The expected value and variance
of wt was studied, and the trade-off between the convergence speed and
accuracy of convergence was demonstrated.

When the current wt is far from the optimal w∗, it is desirable to use
a relatively large η to accelerate the convergence. When it is close to w∗, a
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small η is preferred in order to eliminate fluctuations. An idea of an adaptive
change of η was discussed in Amari (1967) and was called “learning of
learning rules.”

Sompolinsky et al. (1995) (see also Barkai et al., 1995) proposed a rule
of adaptive change of ηt, which is applicable to the pattern classification
problem where the expected loss L(w) is not differentiable atw∗. This article
generalizes their idea to a more general case where L(w) is differentiable
and analyzes its behavior by using the Riemannian structure.

We propose the following learning scheme:

wt+1 = wt − ηt∇̃l(xt,yt; ŵt) (5.1)

ηt+1 = ηt exp{α[βl(xt,yt; ŵt)− ηt]}, (5.2)

where α and β are constants. We also assume that the training data are
generated by a realizable deterministic teacher and that L(w∗) = 0 holds
at the optimal value. (See Murata, Müller, Ziehe, and Amari (1996) for a
more general case.) We try to analyze the dynamical behavior of learning
by using the continuous version of the algorithm for the sake of simplicity,

d
dt
wt = −ηtG−1(wt)

∂

∂w
l(xt,yt;wt), (5.3)

d
dt
ηt = αηt[βl(xt,zt;wt)− ηt]. (5.4)

In order to show the dynamical behavior of (wt, ηt), we use the averaged
version of equations 5.3 and 5.4 with respect to the current input-output
pair (xt,yt). The averaged learning equation (Amari, 1967, 1977) is written
as

d
dt
wt = −ηtG−1(wt)

〈
∂

∂w
l(x,y;wt)

〉
, (5.5)

d
dt
ηt = αηt{β〈l(x,y;wt)〉 − ηt}, (5.6)

where 〈 〉 denotes the average over the current (x,y). We also use the
asymptotic evaluations〈

∂

∂w
l(x,y;wt)

〉
=
〈
∂

∂w
l(x,y;w∗)

〉
+
〈

∂2

∂w∂w
l(x,y;w∗)(wt −w∗)

〉
= G∗(wt −w∗),

〈l(x,y;wt)〉 = 1
2
(wt −w∗)TG∗(wt −w∗),

where G∗ = G(w∗) and we used L(w∗) = 0. We then have

d
dt
wt = −ηt(wt −w∗), (5.7)
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d
dt
ηt = αηt

{
β

2
(wt −w∗)TG∗(wt −w∗)− ηt

}
. (5.8)

Now we introduce the squared error variable,

et = 1
2
(wt −w∗)TG∗(wt −w∗), (5.9)

where et is the Riemannian magnitude ofwt −w∗. It is easy to show

d
dt

et = −2ηtet, (5.10)

d
dt
ηt = αβηtet − αη2

t . (5.11)

The behavior of equations 5.10 and 5.11 is interesting. The origin (0, 0)
is its attractor. However, the basin of attraction has a boundary of fractal
structure. Anyway, starting from an adequate initial value, it has the solution
of the form

et = a
t
,

ηt = b
t
.

The coefficients a and b are determined from

a = 2ab

b = −αβab+ αb2.

This gives

b = 1
2
,

a = 1
β

(
1
2
− 1
α

)
, α > 2.

This proves the 1/t convergence rate of the generalization error, that is,
the optimal order for any estimator ŵt converging to w∗. The adaptive ηt
shows a nice characteristic when the target teacher is slowly fluctuating or
changes suddenly.

6 Natural Gradient in the Space of Perceptrons

The Riemannian metric and its inverse are calculated in this section to obtain
the natural gradient explicitly. We begin with an analog simple perceptron
whose input-output behavior is given by

y = f (w · x)+ n, (6.1)
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where n is a gaussian noise subject to N(0, σ 2) and

f (u) = 1− e−u

1+ e−u . (6.2)

The conditional probability density of y when x is applied is

p(y | x;w) = 1√
2πσ

exp
{
− 1

2σ 2 [y− f (w · x)]2
}
. (6.3)

The distribution q(x) of inputs x is assumed to be the normal distribution
N(0, I). The joint distribution of (x, y) is

p(y,x;w) = q(x)p(y | x;w).

In order to calculate the metric G of equation 3.11 explicitly, let us put

w2 = |w|2 =
∑

w2
i (6.4)

where |w| is the Euclidean norm. We then have the following theorem.

Theorem 3. The Fisher information metric is

G(w) = w2c1(w)I + {c2(w)− c1(w)}wwT, (6.5)

where c1(w) and c2(w) are given by

c1(w) = 1

4
√

2πσ 2w2

∫
{ f 2(wε)− 1}2 exp

{
−1

2
ε2
}

dε,

c2(w) = 1

4
√

2πσ 2w2

∫
{ f 2(wε)− 1}2ε2 exp

{
−1

2
ε2
}

dε.

Proof. We have

log p(y,x;w) = log q(x)− log(
√

2πσ)− 1
2σ 2 [y− f (w · x)]2.

Hence,

∂

∂wi
log p(y,x;w) = 1

σ 2 {y− f (w · x)} f ′(w · x)xi

= 1
σ 2 nf ′(w · x)xi.
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The Fisher information matrix is given by

gij(w) = E
[
∂

∂wi
log p

∂

∂wj
log p

]
= 1
σ 2 E[{ f ′(w · x)}2xixj],

where E[n2] = σ 2 is taken into account. This can be written, in the vector-
matrix form, as

G(w) = 1
σ 2 E[( f ′)2xxT].

In order to show equation 6.5, we calculate the quadratic form rTG(w)r for
arbitrary r. When r = w,

wTGw = 1
σ 2 E[{ f ′(w · x)}2(w · x)2].

Since u = w · x is subject to N(0,w2), we put u = wε, where ε is subject to
N(0, 1). Noting that

f ′(u) = 1
2
{1− f 2(u)},

we have,

wTG(w)w = w2

4
√

2πσ 2

∫
ε2{ f 2(wε)− 1}2 exp

{
−ε

2

2

}
dε,

which confirms equation 6.5 when r = w. We next put r = v, where v is
an arbitrary unit vector orthogonal to w (in the Euclidean sense). We then
have

vTG(w)v = 1
4σ 2 E[{ f 2(w · x)− 1}2(v · x)2].

Since u = w · x and v = v · x are independent, and v is subject to N(0, 1),
we have

vTG(w)v = 1
4σ 2 E[(v · x)2]E[( f 2{w · x)− 1}2]

= 1

4
√

2πσ 2

∫
{ f 2(wε)− 1}2 exp

{
−ε

2

2

}
dε.



Natural Gradient Works Efficiently in Learning 267

Since G(w) in equation 6.5 is determined by the quadratic forms for n-
independentw and v’s, this proves equation 6.5.

To obtain the natural gradient, it is necessary to have an explicit form of
G−1. We can calculate G−1(w) explicitly in the perceptron case.

Theorem 4. The inverse of the Fisher information metric is

G−1(w) = 1
w2c1(w)

I + 1
w4

(
1

c2(w)
− 1

c1(w)

)
wwT. (6.6)

This can easily be proved by direct calculation of GG−1. The natural
gradient learning equation (3.10) is then given by

wt+1 = wt + ηt{yt − f (wt.xt)} f ′(wt · xt)[
1

w2
t c1(wt)

xt + 1
w4

t

(
1

c2(wt)
− 1

c1(wt)

)
(wt · xt)wt

]
. (6.7)

We now show some other geometrical characteristics of the parameter
space of perceptrons. The volume Vn of the manifold of simple perceptrons
is measured by

Vn =
∫ √
|G(w)|dw (6.8)

where |G(w)| is the determinant of G = (gij), which represents the volume
density by the Riemannian metric. It is interesting to see that the manifold
of perceptrons has a finite volume.

Bayesian statistics considers thatw is randomly chosen subject to a prior
distribution π(w). A choice of π(w) is the Jeffrey prior or noninformative
prior given by

π(w) = 1
Vn

√
|G(w)|. (6.9)

The Jeffrey prior is calculated as follows.

Theorem 5. The Jeffrey prior and the volume of the manifold are given, respec-
tively, by√

|G(w)| = w
Vn

√
c2(w){c1(w)}n−1, (6.10)

Vn = an−1

∫ √
c2(w){c1(w)}n−1wndw, (6.11)

respectively, where an−1 is the area of the unit (n− 1)-sphere.
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The Fisher metric G can also be calculated for multilayer perceptrons. Let
us consider a multilayer perceptron having m hidden units with sigmoidal
activation functions and a linear output unit. The input-output relation is

y =
∑

vi f (wi · x)+ n,

or the conditional probability is

p(y | x;v,w1, . . . ,wm) = c exp
[
−1

2
{y−

∑
vi f (wi · x)}2

]
. (6.12)

The total parameterw consist of {v,w1, . . . ,wm}. Let us calculate the Fisher
information matrix G. It consists of m+1 blocks corresponding to thesewi’s
and v.

From

∂

∂wi
log p(y | x;w) = nvi f ′(wi · x)x,

we easily obtain the block submatrix corresponding towi as

E
[
∂

∂wi
log p

∂

∂wi
log p

]
= 1
σ 4 E[n2]v2

i E[{ f ′(wi · x)}2xxT]

= 1
σ 2 v2

i E[{ f ′(wi · x)}2xxT].

This is exactly the same as the simple perceptron case except for a factor of
(vi)

2. For the off-diagonal block, we have

E
[
∂

∂wi
log p

∂

∂wj
log p

]
= 1
σ 2 vivjE[ f ′(wi · x) f ′(wj · x)xxT].

In this case, we have the following form,

Gwiwj = cijI + diiwiw
T
i + dijwiw

T
j + djiwjw

T
i + djjwjw

T
j , (6.13)

where the coefficients cij and dij’s are calculated explicitly by similar meth-
ods.

The v block and v and wi block are also calculated similarly. However,
the inversion of G is not easy except for simple cases. It requires inversion
of a 2(m + 1) dimensional matrix. However, this is much better than the
direct inversion of the original (n+ 1)m-dimensional matrix of G. Yang and
Amari (1997) performed a preliminary study on the performance of the
natural gradient learning algorithm for a simple multilayer perceptron. The
result shows that natural gradient learning might be free from the plateau
phenomenon. Once the learning trajectory is trapped in a plateau, it takes
a long time to get out of it.
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7 Natural Gradient in the Space of Matrices and Blind Source
Separation

We now define a Riemannian structure to the space of all the m×m nonsin-
gular matrices, which forms a Lie group denoted by Gl(m), for the purpose
of introducing the natural gradient learning rule to the blind source sepa-
ration problem. Let dW be a small deviation of a matrix from W to W+ dW.
The tangent space TW of Gl(m) at W is a linear space spanned by all such
small deviations dWij’s and is called the Lie algebra.

We need to introduce an inner product at W by defining the squared
norm of dW

ds2 = 〈dW, dW〉W =‖ dW ‖2 .

By multiplying W−1 from the right, W is mapped to WW−1 = I, the unit
matrix, and W + dW is mapped to (W + dW)W−1 = I + dX, where

dX = dWW−1. (7.1)

This shows that a deviation dW at W is equivalent to the deviation dX at I by
the correspondence given by multiplication of W−1. The Lie group invari-
ance requires that the metric is kept invariant under this correspondence,
that is, the inner product of dW at W is equal to the inner product of dWY
at WY for any Y,

〈dW, dW〉W = 〈dWY, dWY〉WY. (7.2)

When Y = W−1, WY = I. This principle was used to derive the natural
gradient in Amari, Cichocki, and Yang (1996); see also Yang and Amari
(1997) for detail. Here we give its analysis by using dX.

We define the inner product at I by

〈dX, dX〉I =
∑

i,j

(dXij)
2 = tr(dXTdX). (7.3)

We then have the Riemannian metric structure at W as

〈dW, dW〉W = tr{(W−1)TdWTdWW−1}. (7.4)

We can write the metric tensor G in the component form. It is a quantity
having four indices Gij,kl(W) such that

ds2 =
∑

Gij,kl(W)dWijdWkl,

Gij,kl(W) =
∑

m
δikW−1

jm W−1
lm , (7.5)
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where W−1
jm are the components of W−1. While it may not appear to be

straightforward to obtain the explicit form of G−1 and natural gradient ∇̃L,
in fact it can be calculated as shown below.

Theorem 6. The natural gradient in the matrix space is given by

∇̃L = (∇L)WTW. (7.6)

Proof. The metric is Euclidean at I, so that both G(I) and its inverse, G−1(I),
are the identity. Therefore, by mapping dW at W to dX at I, the natural
gradient learning rule in terms of dX is written as

dX
dt
= −ηtG−1(I)

∂L
∂X
= −ηt

∂L
∂X
, (7.7)

where the continuous time version is used. We have from equation 7.1

dX
dt
= dW

dt
W−1. (7.8)

The gradient ∂L/∂X is calculated as

∂L
∂X
= ∂L(W)

∂W

(
∂WT

∂X

)
= ∂L
∂W

WT.

Therefore, the natural gradient learning rule is

dW
dt
= −ηt

∂L
∂W

WTW,

which proves equation 7.6.

The dX = dWW−1 forms a basis of the tangent space at W, but this is
not integrable; that is, we cannot find any matrix function X = X(W) that
satisfies equation 7.1. Such a basis is called a nonholonomic basis. This is a
locally defined basis but is convenient for our purpose. Let us calculate the
natural gradient explicitly. To this end, we put

l(x,W) = − log det |W| −
n∑

i−1

log fi(yi), (7.9)

where y = Wx and fi(yi) is an adequate probability distribution. The ex-
pected loss is

L(W) = E[l(x,W)],
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which represents the entropy of the output y after a componentwise non-
linear transformation (Nadal & Parga, 1994; Bell & Sejnowski, 1995). The
independent component analysis or the mutual information criterion also
gives a similar loss function (Comon, 1994; Amari et al., 1996; see also Oja
& Karhunen, 1995). When fi is the true probability density function of the
ith source, l(x,W) is the negative of the log likelihood.

The natural gradient of l is calculated as follows. We calculate the differ-
ential

dl = l(x,W + dW)− l(x,W) = −d log det |W| −
∑

d log fi(yi)

due to change dW. Then,

d log det |W| = log det |W + dW| − log det |W|
= log det |(W + dW)W−1| = log(det |I + dX|)
= trdX.

Similarly, from dy = dWx,∑
d log fi(yi) = −ϕ(y)TdWx

= −ϕ(y)TdXy,

where ϕ(y) is the column vector

ϕ(y) = [ϕ1(y1), . . . , ϕm(ym)],

ϕi(yi) = − d
dy

log fi(yi). (7.10)

This gives ∂L/∂X, and the natural gradient learning equation is

dW
dt
= ηt(I − ϕ(y)Ty)W. (7.11)

The efficiency of this equation is studied from the statistical and informa-
tion geometrical point of view (Amari & Kawanabe, 1997; Amari & Cardoso,
in press). We further calculate the Hessian by using the natural frame dX,

d2l = yTdXTϕ̇(y)dXy + ϕ(y)TdXdXy, (7.12)

where ϕ̇(y) is the diagonal matrix with diagonal entries dϕi(yi)/dyi. Its ex-
pectation can be explicitly calculated (Amari et al., in press). The Hessian is
decomposed into diagonal elements and two-by-two diagonal blocks (see
also Cardoso & Laheld, 1996). Hence, the stability of the above learning rule
is easily checked. Thus, in terms of dX, we can solve the two fundamental
problems: the efficiency and the stability of learning algorithms of blind
source separation (Amari & Cardoso, in press; Amari et al., in press).
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8 Natural Gradient in Systems Space

The problem is how to define the Riemannian structure in the parameter
space {W(z)} of systems, where z is the time-shift operator. This was given
in Amari (1987) from the point of view of information geometry (Amari,
1985, 1997a; Murray & Rice, 1993). We show here only ideas (see Douglas et
al., 1996; Amari, Douglas, Cichocki, & Yang, 1997, for preliminary studies).

In the case of multiterminal deconvolution, a typical loss function l is
given by

l = − log det |W0| −
∑

i

∫
p{yi;W (z)} log fi(yi)dyi, (8.1)

where p{yi;W (z)} is the marginal distribution of y(t)which is derived from
the past sequence ofx(t) by matrix convolutionW (z) of equation 3.24. This
type of loss function is obtained from maximization of entropy, independent
component analysis, or maximum likelihood.

The gradient of l is given by

∇ml = −(W−1
0 )Tδ0m +ϕ(yt)x

T(t−m), (8.2)

where

∇m = ∂

∂Wm
,

and

∇l =
d∑

m=0

(∇ml)z−m. (8.3)

In order to calculate the natural gradient, we need to define the Riemannian
metric G in the manifold of linear systems. The geometrical theory of the
manifold of linear systems by Amari (1987) defines the Riemannian metric
and a pair of dual affine connections in the space of linear systems.

Let

dW (z) =
∑

m
dWmz−m (8.4)

be a small deviation of W (z). We postulate that the inner product
〈dW (z), dW (z)〉 is invariant under the operation of any matrix filter Y (z),

〈dW (z), dW (z)〉W (z) = 〈dW (z)Y (z), dW (z)Y (z)〉WY , (8.5)
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where Y (z) is any system matrix. If we put

Y (z) = {W (z)}−1,

which is a general system not necessarily belonging to FIR,

W (z){W (z)}−1 = I(z),

which is the identity system

I(z) = I

not including any z−m terms. The tangent vector dW (z) is mapped to

dX(z) = dW (z){W (z)}−1. (8.6)

The inner product at I is defined by

〈dX(z), dX(z)〉I =
∑
m,ij

(dXm,ij)
2, (8.7)

where dXm,ij are the elements of matrix dXm.
The natural gradient

∇̃l = G−1 ◦ ∇l

of the manifold of systems is given as follows.

Theorem 7. The natural gradient of the manifold of systems is given by

∇̃l = ∇l(z)W T(z−1)W (z), (8.8)

where operator z−1 should be operated adequately.

The proof is omitted. It should be remarked that ∇̃l does not belong to
the class of FIR systems, nor does it satisfy the causality condition either.
Hence, in order to obtain an online learning algorithm, we need to introduce
time delay to map it to the space of causal FIR systems. This article shows
only the principles involved; details will published in a separate article by
Amari, Douglas, and Cichocki.
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9 Conclusions

This article introduces the Riemannian structures to the parameter spaces
of multilayer perceptrons, blind source separation, and blind source decon-
volution by means of information geometry. The natural gradient learning
method is then introduced and is shown to be statistically efficient. This
implies that optimal online learning is as efficient as optimal batch learning
when the Fisher information matrix exists. It is also suggested that natural
gradient learning might be easier to get out of plateaus than conventional
stochastic gradient learning.
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Jutten, C., & Hérault, J. (1991). Blind separation of sources, an adaptive algorithm
based on neuromimetic architecture. Signal Processing, 24(1), 1–31.

Kushner, H. J., & Clark, D. S. (1978). Stochastic approximation methods for con-
strained and unconstrained systems. Berlin: Springer-Verlag.

Murata, N., & Müller, K. R., Ziehe, A., & Amari, S. (1996). Adaptive on-line learn-
ing in changing environments. In M. C. Mozer, M. I. Jordan, & Th. Petsche
(Eds.), Advaces in neural processing systems, 9. Cambridge, MA: MIT Press.

Murray, M. K., & Rice, J. W. (1993). Differential geometry and statistics. New York:
Chapman & Hall.

Nadal, J. P. & Parga, N. (1994). Nonlinear neurons in the low noise limit—A
factorial code maximizes information transfer. Network, 5, 561–581.

Oja, E., & Karhunen, J. (1995). Signal separation by nonlinear Hebbian learning.
In M. Palaniswami et al. (Eds.), Computational intelligence—A dynamic systems
perspective (pp. 83–97). New York: IEEE Press.

Opper, M. (1996). Online versus offline learning from random examples: Gen-
eral results. Phys. Rev. Lett., 77, 4671–4674.

Rao, C. R. (1945). Information and accuracy attainable in the estimation of sta-
tistical parameters. Bulletin of the Calcutta Mathematical Society, 37, 81–91.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal repre-
sentations by error propagation. Parallel Distributed Processing (Vol. 1, pp. 318–
362). Cambridge, MA: MIT Press.



276 Shun-ichi Amari

Saad, D., & Solla, S. A. (1995). On-line learning in soft committee machines. Phys.
Rev. E, 52, 4225–4243.

Sompolinsky, H., Barkai, N., & Seung, H. S. (1995). On-line learning of di-
chotomies: Algorithms and learning curves. In J.-H. Oh et al. (Eds.), Neu-
ral networks: The statistical mechanics perspective (pp. 105–130). Proceedings
of the CTP-PBSRI Joint Workshop on Theoretical Physics. Singapore: World
Scientific.

Tsypkin, Ya. Z. (1973). Foundation of the theory of learning systems. New York:
Academic Press.

Van den Broeck, C., & Reimann, P. (1996). Unsupervised learning by examples:
On-line versus off-line. Phys. Rev. Lett., 76, 2188–2191.

Widrow, B. (1963). A statistical theory of adaptation. Oxford: Pergamon Press.
Yang, H. H., & Amari, S. (1997). Application of natural gradient in training multilayer

perceptrons. Unpublished manuscript.
Yang, H. H., & Amari, S. (In press). Adaptive on-line learning algorithms

for blind separation—Maximum entropy and minimal mutual information.
Neural Computation.

Received January 24, 1997; accepted May 20, 1997.


